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An implementation of the free-embedding scheme for high-temperature series 
generation on the body-centered cubic family of lattices in arbitrary dimension 
d is described. Series to order 21 in inverse temperature are tabulated for several 
scalar field models, both for the magnetic susceptibility and for the second 
moment of the spin correlation function. The critical behavior of a family of 
3-dimensional "double Gaussian" models, which interpolate continuously 
between the spin-l/2 lsing model and the Gaussian model, is analyzed in detail 
away from the Gaussian model limit using confluent inhomogeneous second- 
order differential approximants. With our best estimate of the correction-to- 
scaling exponent, 0 = 0.52 + 0.03, the leading exponents for the susceptibility 
and correlation length for this family are consistent with universality and 
are given by 7=1.237+0.002 and v=0.630_+0.0015, respectively, and 
~1 = 2 - 7/v = 0.0359 _+ 0.0007. 

KEY WORDS: Ising model; series generation; series analysis; critical 
exponents; universality. 

1. I N T R O D U C T I O N  A N D  S U M M A R Y  OF RESULTS 

Estimates of critical exponents  deduced from high-temperature  series on 
3-dimensional  lattices have been puzzling for a n u m b e r  of years. Cont ra ry  

to the expectations of renormal iza t ion-group theory, there has been 
evidence both  for the failure of hyperscaling (1) and  the absence of univer- 
sality, The latter is suggested by a discrepancy between the "classical" 
estimates of the susceptibility exponent  ? = 1,250_+ 0.003 (2) and  the correla- 

n~R+0-oo2 (3) and  the most  recent space t ion length exponent  v = v  . . . .  o.ool, 
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continuum ~b4-model estimates. (4) These are 7 = 1.241 +__0.002 and 
v=0.6300+_0.0015, based on Borel resummation of coupling constant 
perturbation expansions, and 7 = 1.2390___ 0.0025 and v = 0.6310 + 0.0015, 
based on Borel resummation of e-expansion series supplemented by exact 
results in two dimensions. However, the numerical arguments for or 
against hyperscaling and universality appear to depend on the method used 
to analyze series expansions of limited length. Each method inevitably 
builds in particular "function biases" and, as a consequence, yields analysis- 
dependent results. 3 It is therefore hoped that with longer series, less func- 
tion-biased analyses might be undertaken which will either confirm, say, 
the absence of universality or resolve the apparent discrepancies and show 
how they arose from certain biases. 

Although the prospects for extending these series for general 
3-dimensional lattices are not encouraging, a great simplification in the 
high-temperature series generation process is possible for the body-centered 
cubic (bcc) lattice. 15) Exploiting this simplification, Nickel reported new 
21-term spin-l/2 Ising series for the susceptibility and correlation length at 
Carg6se in 1980. (9) Also reported was a preliminary analysis of these and 
corresponding higher-spin-S series which showed that the "classical" expo- 
nent estimates were seriously in error and that the new estimates appeared 
to be consistent with universality. Since then, series for other models have 
been derived and many more analyses (~~ of these bcc series have been 
reported; ref. 21 contains a recent discussion. Here we finally (!) report the 
details of this series derivation, tabulate series coefficients for models we 
hope will be of general interest, and present an analysis which in 
preliminary stages was reported at Stat Phys XIV, (22) Rutgers, (23) and 
APS (z4) meetings. 

Our analysis is based on confluent inhomogeneous second-order dif- 
ferential approximants which, by allowing for a correction-to-scaling term 
in a simple form and an analytic background, can (potentially) yield an 
unbiased test of universality. However, in practice we can only obtain the 
high precision of about three decimal places for 7 and v and not quite two 
decimal places for the correction-to-scaling exponent 0 by comparing 
different models and "forcing" universality by a best-fit procedure. As 
opposed to other methods of series analysis which usually focus on a single 
thermodynamic quantity, our approach uses both susceptibility and 
correlation-length series and makes use of several internal consistency 
checks to help reduce the effects of function bias. Our best estimates of the 
critical exponents are consistent with (1) a common correction-to-scaling 

J See, ['or example, the discussion of hyperscaling in ref. 5, or compare the analyses by Gaunt 
and Sykes ~6) and Zinn-Justin/7) A review of early work has been compiled by Gaunt. 18~ 
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exponent 0 for a family of models; (2) the same critical temperature for 
both the susceptibility and correlation length series for a given model; (3) 
a common value of y*, i.e., the model parameter at which the leading 
correction-to-scaling vanishes; and (4) universality of the subdominant 
amplitude ratio. The use of confluent approximants is essential to our 
method; Guttmann (2~ also carried out a differential approximant analysis 
without explicitly including a confluent singularity in each approximant 
and obtained rather different results. Inhomogeneous approximants have 
been found to be particularly important in reducing the overall scatter 
of the critical exponent estimates, especially for the ~2 series. Such 
inhomogeneous approximants automatically incorporate an analytic back- 
ground and remove spurious effects of the leading terms in a series. The 
effect of the inhomogeneous term on critical exponent estimates is a reduc- 
tion of about 0.002 in both 7 and 2v. Our results are, within error limits, 
consistent with other analyses that are also unbiased in their exponent 
choices and that explicitly depend on model comparisons. (13) A common 
conclusion is that for the spin-l/2 Ising model, the correction-to-scaling 
term, though small, cannot be neglected. On the other hand, our conclusion 
is similar to that reached by Zinn-Justin (1~ and is worth stressing; namely, 
that even with the long series now available, any analysis based solely on 
the spin-l/2 series cannot predict the presence of a correction-to-scaling 
term. 4 

A summary of this paper in somewhat more detail is as follows. As 
mentioned in ref. 5, the evaluation of graph embedding constants, which 
for most lattices is the most time-consuming part of the series calculation, 
becomes almost trivial on the family 5 of d-dimensional lattices for which 
the interactions couple fields bilinearly on lattice sites separated by any of 
the 2 u vector displacements (+1, +1 ..... + 1). Another consequence of 
this factorization is that the high-temperature susceptibility series can be 
written as 1 

n=O ~ imi=n + l 

• Z [Eg({mi})] d wg({mi}) (1.I) 
g 

4 Both Mellin transform (H~ and 5-point fits (~6) fail to find significant corrections for the 
spin-l/2 case. The trend of the D log Pad6 estimates ~9) is suggestive of a correction, but of 
course each approximant specifically excludes such a term. Finally, for spin 1/2, second- 
order differential approximants ~22) fit just as easily with 0 - 7 ,  i.e., an analytic background, 
as with 0 ~ 0.5. 

5 This "bcc family" includes a pair of sites (d=  0), the linear chain (d = 1 ), the simple quad- 
ratic lattice (d=  2), the bcc (d=  3), and higher-dimensional generalizations. The basis for the 
simplification is a factorizabitity described in Section 2, which reduces the d-dimensional 
embedding calculation to that in one dimension. 
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and the second moment of the 2-point correlations as 

M2(K) = ~ -~. Z " (~2~) "~ 
n = O  ~.irn~=n+ l 

x 2 [Eg({m,})] d-~ Fg({mi}) Wg({mi}) (1.2) 
g 

where K is the inverse temperature and {Pzi}, the cumulant moments of the 
single-site field distribution [see Eqs. (2.1) and (2.6)], are the physical 
model-dependent parameters; the dimension d appears only as an expo- 
nent, while the remaining quantities are integer constants that can be given 
a graphical interpretation. In particular, the mi are the number of vertices 
of order 2i in 2-rooted graphs of type g; Eg({mi} ) is a one-dimensional 
embedding constant or zeroth moment in root separation, while Fg({mi}) 
is the second moment in root separation. Wg({m~}) is a sum of 
symmetry-related weight factors of all graphs with the same embedding 
constant moments Eg and Fg. A few technical details of the computer 
program that determines these integer constants through order n = 21 are 
also described in Section 2. 

The data for Z and M2 for the order K zl calculation comprise nearly 
100,000 entries of the constants Eg, Fg, and Wg and can be conveniently 
transferred only via magnetic tape. To make these results more directly 
accessible, we specialize the general scalar models, characterized by the set 
of cumulant moments {#2~}, to models in which the single-site field 
distribution is parametrized by a single variable y. The series for Z and M2 
can then be written as 

z(K, y ) = ~  KnAn(y), M2(K, y ) = ~  KnB.(y) (1.3) 

Furthermore, a number of physically interesting models exist for which the 
A,(y) and B,(y) are expressible as polynomials of order approximately n. 
Such models, which include spin-S Ising, Blume-Capel, (25) Klauder, (26/and 
double-Gaussian (23) or range, ~27) are described in Section 3 and a few 
representative tables of coefficients of double power series in K and y are 
listed in the Appendix. Readers interested in other models should contact 
the authors. 

With the much longer series now available one can reexamine the pre- 
vious Ising model critical exponent estimates using a number of methods 
ranging from such commonly used approaches as the ratio and D log Pad6 
to the more recently developed second-order differential approximants (28) 
and (two-variable) partial differential approximants. (18'29) Each method 
has its relative merits. For example, the conventional D log Pad6 is easy to 
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apply and directly separates the effects of unphysical singularities from the 
critical singularities of physical interest. Unfortunately, the method assumes 
the absence of correction-to-scaling terms discussed by Wegner,(3~ and this 
can lead to systematic errors in the leading critical exponent estimates. 
Exponents from D log Pad6 approximants (9) to 21-term spin-S Ising series 
are spin dependent and taken at face value suggest the absence of univer- 
sality. On the other hand, the two-variable partial differential approximant 
method ~13) as applied to the double-Gaussian and Klauder series assumes 
the presence of a single correction-to-scaling term in the scaling form 
predicted by renormalization-group theory. (3~ Since this method uses all 
the information in each two-variable series simultaneously, it will probably 
yield the best possible exponent estimates if the renormalization-group 
hypothesis is correct and if higher-order corrections are sufficiently small. 
Of course, it is conceivable that the observed scatter in those estimates (13) 
is a response to model-dependent exponents, and thus in a sense the 
method is not a test of universality. The partial differential approximant 
method of ref. 18 is based on the same scaling assumption, but uses more 
limited information, namely two single-variable series x(K) and ~z(K)/~?y 
for a given model parameter y. Exponent estimates have also been made (19~ 
using inhomogeneous first-order differential approximants and deter- 
mining, self-consistently, a value y* at which the leading nonanalytic 
corrections-to-scaling in )~ vanish. Although not a test of universality, the 
resulting exponents have been used to check the validity of hyperscaling. 

In the present paper we concentrate on analysis of the double- 
Gaussian series by single-variable confluent inhomogeneous second-order 
differential approximants. This simple generalization of the D log Pad6 
method assumes that a single correction-to-scaling term is important. Also, 
as described in Section 4, Z, M2, and the correlation length squared 
42 oc M2/Z are assumed to have critical behavior 

A F 1 - -  -t-a F + B F ,  K ~ K  c 
F(K)~ KcJ L ',, Kc,J J (1.4) 

C F 1 '}-Kcc + D F '  K ~  - K c  

in the neighborhood of the ferromagnetic and antiferromagnetic critical 
points K =  ___ Kc. 6 

6 The second-order inhomogeneous differential approximants exhibit critical behavior of the 
form (1.4), in which the coefficients Ae, aF, and B F ( C  e and Dr) are regular functions of K 
at Kc (--Kc). While it is not likely that the background term B e contains the leading correc- 
tions beyond the ( 1 -  K/Kc) ~ term, its inclusion tends to give more stable estimates for 7F 
and 0 r. This background term may also be the best polynomial approximation to additional 
important but slowly varying confluent corrections. 
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In principle one could determine without bias, other than the implicit 
function bias of a given method, estimates of K c, 7F, and OF for many dif- 
ferent models and then reasonably decide whether universality is satisfied; 
i.e., whether the 7F are model independent and the OF are both model and 
function independent. We find, not too surprisingly, (31) that such double 
exponential fitting is very unstable and that even longer series will be 
needed before one can hope to succeed in verifying universality with this 
naive approach. Thus, instead, we have adopted the procedure of fixing OF 
at a few discrete values and determining only K~ and 7F" We find that there 
is a "best" value for OF= 0 ~ 0.52 + 0.03, for which the exponents 7F are 
most constant over a wide range of y parameter  values in the double- 
Gaussian model. In this limited sense we do verify universality and 
find ?x -- 7 : 1.237 +0.002, 7~2 = 2v = 1.260_+0.003, and t t ---_ 2 - 7 / v  = 
0.0359 ___ 0.0007. It is not clear how much function bias remains in these 
results. While slightly lower than some estimates, our present exponents are 
consistent, within error bounds, with other analyses of the double- 
Gaussian model; e.g., 7 =  1.2385_+0.0015 from ref. 13, 7 = 1.237+0.003 
from ref. 14, 7=1.2378_+0.0012 from ref. 18 (we have doubled those 
authors'  one-standard-deviation error estimates), and 7 = 1.2395_+0.0004 
from ref. 19. Similarly, our results for v are also consistent with other 
analyses; e.g., v = 0.632-t-0.001 from ref. 13, v = 0.630 _+0.003 from ref. 14, 
and v = 0.6312 + 0.0006 from ref. 18. Our value 1 - c~ z = 0.89 + 0.02 is con- 
sistent with the hypersealing relation 3v = 2 -  c~, but is too uncertain to be 
considered a significant test. By comparison, the inhomogeneous differential 
approximants of ref. 19 yield 1 -  ~x = 0.895+0.007, for which the 
hyperscaling relation is satisfied to a precision of -+0.01. 

There is now little indication of an absence of universality or of a 
significant discrepancy between high-temperature series and field-theoretic 
results. Although earlier continuum ~b<model estimates, (4) 7 = 1.241 -+ 0.002 
and r /= 0.031 + 0.004, were only marginally in agreement with the lattice 

estimates derived from e-expansions and exact results, results, the latest ' . (4) 
7 = 1.2390 -+ 0.0025 and tt = 2 - 7/v = 0.0365 __% 0.003, are now consistent, 
within error limits. Additional support for universality is provided by 
studies of leading amplitude ratios. (19) Possible evidence for a lack of 
universality is that the correction-to-scaling amplitude ratio a~2/a x is 
weakly model dependent and near its maximum value ae2/a x ~ 1.7 at the 
spin-l/2 Ising limit. This ratio is some 25 % larger than the value of ~ 1.3 
estimated {32) for the continuum model; however, given the latest continuum 
model results, the value 1.3 is now suspect. Both the large magnitude 
and model dependence of a~2/az are consistent with those found by 
Nickel and Dixon {~4) based on Roskie's (~2) quadratic mapping. The 



Series for Scalar-Field Lattice Models 7 

estimate ar 1.42+0.14, obtained by Zinn-Justin r176 by a modified 
ratio method, is somewhat lower. 

Overall, however, we believe that the analyses based on these new 
high-temperature series favor universality. The series are probably still too 
short to capture the true asymptotic behavior of the correction-to-scaling 
terms, especially since, as already mentioned, these cannot yet be predicted 
for the spin-l/2 Ising model treated in isolation. In view of this, we discuss 
in Section 5 considerations important for an extension of the present 
calculation to generate additional series terms. 

2. S E R I E S  G E N E R A T I O N  

The models considered in this paper are defined by the bcc family 
partition functions 

Z=I~IIf dr162 (2.1) 

where the sites ri are either all even (2l, 2m,...) or all odd (2l+ 1, 2 m +  1,...) 
integer translations from the origin. The interaction couples "nearest" 
neighbor scalar fields ~i, Cj on sites separated by (+  1, _+ 1 ..... + 1). The 
2-point correlation function in zero magnetic field h z is 

( ~ i ~ j )  = ~h~ &hj In Z (2.2) 
{h~=O} 

and its Fourier transform is the propagator or q-dependent susceptibility 

G(q, K)=Zq = ~  (~biCj) exp[ iq .  (r~- r:)] (2.3) 
J 

Of particular interest is the uniform susceptibility X = Xq=o and the 
second moment of the spin correlations 

M2 = - ~q~2x q = o = •  (xi-x;) 2 (r162 (2.4) 
J 

from which one can define the correlation length ~ via 

~2 = MR/2Z (2.5) 

Different models are distinguished by the single-site field distribution 
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function f(~b 2) or equivalently by its cumulant moments ]~2n, which are 
determined from the generating function, 

e x p I ~  (2n)'#2n h2nl=fd~f((~2)ehCj (2.6) 

A number of explicit choices for f(~b 2) are discussed in Section 3. 
The coefficients of the expansion of Zq in powers of K can be represen- 

ted as a graphical sum. Each graph consists of vertices (lattice sites) con- 
nected by bonds ["nearest" neighbor vectors (+ 1, _+ 1 ..... + 1)], each of 
which is associated with a factor K. For the zero-magnetic-field expansion 
considered here, the number of bonds leaving each vertex, which is the 
order of the vertex, must be even. For this particular counting purpose an 
"external" bond is considered to be associated with each root vertex i and 
j in the average ~bi~bj) in (2.2). Also, for the free embedding scheme 
employed here, multiple bonds between pairs of vertices are allowed and 
distinct vertices in a graph are not restricted to correspond to distinct sites 
on the lattice. For a complete description of this scheme we refer the reader 
to the excellent article by Wortis. (33) 

The numerical contribution of a particular graph is the product of a 
number of factors. Besides the factor K" associated with the n internal 
bonds in the graph, a cumulant average #2m is associated with each vertex 
of order 2m. Dividing these factors is the symmetry number of the graph, 
which is the number of distinct ways the internal bonds and vertices can be 
labeled and leave the graph topologically unchanged. Finally, one must 
multiply by the embedding constant, which is the total number of ways the 
vertices of the graph can be identified with lattice sites. 

For example, the graphs shown in Figs. la and lb contribute to )~q the 
values 

)~E~a~ = ~  #2#6~8 ~ ~ ~ V13V~4...exp[iq'(r~--r2)] (2.7a) 
r2,...,rlO 

)~ [lb] = / ~  ]~2 ~4~6 ~ ~ g13v37...exp[iq.(rl-rz) ] (2.7b) 
r2,...,rl0 

where the V~ are the "nearest" neighbor interactions, that is, Vu= 1 if 
r i - r j=(_+l , . . . ,  +1) and zero otherwise. The 3! and 5! in Eq. (2.7) 
correspond to the possible permutations of the multiple bonds. The factor 
1/2 in (2.7a) is the result of the vertex pair 7, 8 ~ 9, 10 relabeling symmetry, 
while in (2.7b) it is the 4 ~ 6 relabeling. 

The presence of multiple bonds does not affect the lattice site sums, 
since V~= Vii. Furthermore, since all site locations are unrestricted, site 
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Fig. 1. Two order-K 18 contributions to Z- The open circles labeled 1 and 2 are the roots, 
each solid line is a "nearest" neighbor bond associated with a factor K, and the dashed lines 
are the fictitious external bonds. All vertices are necessarily of even valence; all loops are of 
even length. 

sums can also be evaluated simply in Fourier space. Using the inverse 
transform V~ = ~ daq Vq exp[- - iq. ( r i -  rf l](2n) d, where 

Vq = 2 a cos qx cos qy... (2.8) 

is the Fourier transform of the "nearest" neighbor interaction Vii, we 
obtain for the sums in both (2.7a) and (2.7b) the same three-loop integral 

(''')~--- Vq ('j daql daq2 2 - 2 ~ )  d ql q2 r q l  q2 +q  
r2,...,rl0 

x f ~ daq3 V 4q3 (2.9) 

The form for Vq in Eq. (2.8) is special to the bcc family; because of its 
factorizability, the expression (2.9) can be rewritten as a product 1-I~ Eq~ 
of d one-dimensional embedding constants, of the form 

Eq = 2 cos q~ "~ - ~ - ( 2 c o s q l ) a ( 2 c o s q 2 )  3 

f]~ clq3 
x 2 cos(q1 - q2 + q~) -}-~- (2 COS q3) 4 

-- 108 + 108 cos 2q~ (2.10) 

where q~ is one of the components of q. The evaluation of such one-dimen- 
sional embedding constants is usually most easily carried out in position 
space, but in any case is no longer the most time-consuming part of the 
graph calculation. This is the crucial feature that has made the present 
order-K 21 calculation possible. 
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Quite generally, the contribution of a particular graph to Zq is of the 
two possible forms 

, s Zig] ~--HT ~I (~2m) cm ek ~cos(Zk+ 1)q~JJ w (2.11) 
m 

A complete description of this contribution is contained in the two linear 
and integer arrays c~n and ek and the weight w, which, because of the factor 
n!, is also an integer. Graphs which are described by the same charac- 
teristic arrays Cm and ek can be combined by adding together their respec- 
tive weights w. This leads to a very considerable reduction of the number 
of tabular entries. Further reduction is possible if we specialize to the 
uniform susceptibility or the second moment; the array ek can then be com- 
bined into the single number Eg as in (1.1) or the pair Eg and Fg as in (1.2). 
This reduction in storage requirements is the second most important 
feature that has made possible the present calculation. 

In the remainder of this section we will describe a few technical details 
of the graph generation program. We have used the 2-point renormaliza- 
tion scheme as outlined by Wortis, (33~ with one basic difference: that we 
never explicitly specify the field distribution function f(q~2) and hence the 
moments {#2m}" Instead, the equivalent information is always stored in 
arrays like cm in (2.11) which specify the number of vertices of various 
orders. 

The program divides roughly into five parts. First, a table of elemen- 
tary 2-rooted, 2-irreducible graphs is generated. Second, the bonds in these 
graphs are replaced in all possible ways by 2-rooted, 1-irreducible segments 
to produce a table of elementary 2-rooted, 1-irreducible contributions. 
Third, another program segment generates 2-rooted nodal and ladder con- 
tributions which, when combined with the elementary contributions, yields 
a table of all 2-rooted, 1-irreducible contributions. Fourth, the two roots 
are collapsed to a single root to generate vertex insertions. These are self- 
consistently iterated to generate a complete table of 1-rooted contributions 
with bare vertices. Fifth, the 1-root contributions are used as replacements 
for the vertices in the 2-rooted, 1-irreducible table to generate all 2-rooted 
contributions with bare vertices. These last two tables constitute the infor- 
mation from which X and M2 can be obtained via (1.I) and (1.2). 

The description of the entire program would be too long and not par- 
ticularly instructive. Instead, we outline below the third segment to give a 
flavor of the data-handling techniques we have employed. Some additional 
remarks may be found in Section 5, where we discuss the prospects for a 
higher-order calculation. 

Assume that a table of low-order elementary, nodal, and ladder c o n -  
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tributions exists. A particular entry contains the following information 
elements: (1) order n; (2) type: elementary, nodal, or ladder; (3) whether 
the embedding constant array represents an expansion in cos 2kq or 
cos(2k+ 1)q [cf. Eq. (2.11)]; (4) whether the roots are of odd order or 
even order; (5) orders vL and vR of the two roots; (6) array in which ele- 
ment Cm is the number of vertices exclusive of the roots of order 2m; (7) 
number of elements in embedding constant array ek; (8) greatest common 
factor f of the array elements ek; and (9) pointer to another table giving 
location of the reduced array ek/f. For ladder entries the following addi- 
tional information is stored: (10) pointer to the same table giving location 
of the most recently added rung; and (11) the number of times 1 this par- 
ticular rung is present in the ladder. The final piece of information is the 
weight w, which, because it is an integer of order n !, is stored in four 32-bit 
words as an IBM quadruple-precision real. All the remaining information 
is packed into additional sets of four 32-bit words. 

This packing onto a fixed length of 32 bytes/entry considerably sim- 
plifies the data handling. The variable-length entries are restricted entirely 
to the table of reduced embedding constant arrays ek/f, but it is a relatively 
short table and its handling is not a problem. Note also that packing leads 
in some cases to greater efficiency in the use of the data. For example, the 
entire array cm fits in a single 32-bit word and the addition of two arrays 
Cm and c~ becomes the addition of two single words. Since addition is the 
only operation performed on the Cm arrays in this particular program 
segment, those arrays need never be unpacked. 

The rules for generating a new graph C from two graphs A and B are 
simple. A ladder C can be generated from all possible A and B that have 
the same information element 3, except that, to avoid overcounting, both 
may not simultaneously be ladders themselves. Also, again to avoid over- 
counting, the rungs are added in a particular order; if B is considered as 
the new rung to be added to A, it may not come from any table location 
beyond that of the previously added rung (see information element 10). If 
it comes from the same location, l is incremented by unity; otherwise, l is 
set equal unity (see information element 11). Then 

n(C) = n(A) + n(B) 

vr, R(C) = VL, R(A) + VL.~(B) 

Cm(C) = Cm(A) + Cm(B) 

ek(C) = ek(A), ek(B) 

w(C) : (n(C)'] w(A) w(B)/l 
\n (A)J  
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The binomial coefficient in the expression for the new weight arises because 
of our decision to include a factor of n! in (2.11); dividing the weight by 
l generates the correct l! symmetry factor associated with l identical rungs 
in the ladder. Similarly, a nodal contribution C can be generated from all 
A and B that have the same information element 4, except that both may 
not be nodal. Now 

n(C)=n(A)+n(B) ,  VL(C)=vz(A), 

cm( C ) = cm(A ) -t- cm(B) + 52m,~R(A)+vL(B) 

w(C) = w(A) w(B) 
\n(A ),] 

v . ( C )  = vR(B) 

The new embedding constant ek(C) is a convolution of the two arrays, 
ek(A) and ek(B); that is, the new array in Fourier space representation is 
a simple product of the old arrays. 

As new contributions are generated, a search is initiated through the 
embedding constant array table for the reduced array ek/f. If such an entry 
is found, the pointer to this old entry is recorded as information element 
9; otherwise, a new entry is made and a new pointer is generated first. A 
search based on the B-tree algorithm described by Knuth (34) is then 
initiated through the table of ladder or nodal graphs. If an entry is found 
whose four 32-bit word descriptor is identical to the descriptor of the new 
contribution, the new weight w is added to the already stored weight. 
Otherwise, a new entry is established. Note that what is stored in this 
2-rooted, 1-irreducible table of elementary, ladder, and nodal contributions 
is not necessarily individual graphs, but, rather, sums of graphs whose 
description elements 1-11 given above are the same. Even with this very 
significant packing, the cumulative number of entries in the table through 
order K 21 is nearly 3,000,000 and requires three 40-megabyte tapes for 
storage. 

We conclude by reviewing the most important features of the present 
calculation. First, it is not important that free embedding counts are larger 
than the counts in either the weak or the strong embedding scheme. What 
is crucial, and yet was not recognized in the Wortis article, (33) is that for 
the bcc family of lattices the free embedding count factorizes and each 
graph embedding constant reduces to a one-dimensional calculation. Also, 
each graph that contributes in dimension d =  3, say, also contributes in any 
other dimension d. Thus, the known d =  1 and d = 2 results serve as com- 
plete sum rule checks not available in the weak and strong embedding 
schemes. Second, although renormalization in the free embedding scheme 
replaces graphical complexity by algebraic complexity, it was recognized by 



Series for Scalar-Field Lattice Models  13 

Wortis and co-workers (33' 35) that a significant advantage can still be gained 
by renormalization. That is, if the complete description of a graph as con- 
tained, say, in the adjacency matrix (33) is replaced by the limited algebraic 
information as given in 1-11 above, then many graphs may combine into 
a single algebraic entry. Savings in both handling time and storage increase 
dramatically with the order of the calculation. 

At the 1-point and 2-point renormalization level used here, only 
elementary 2-rooted, 2-irreducible graphs need be generated and stored as 
graphs. For orders 7, 9, 11, 13, 15, 17, 19, and 21 the cumulative total 
number of elementary graphs required is approximately 1, 1, 6, 26, 145, 
917, 6931, and 60,237. Extrapolation suggests that about 7 x 106 graphs 
would be required for an order-K 25 calculation: such a list is quite 
manageable in terms of storage requirements. However, to generate this list 
is nontrivial by present techniques and will be discussed briefly in Sec- 
tion 5. We now believe this is a more fundamental barrier to any extension 
of the series for Z and M 2 than the problem of sorting and storing the 
1-irreducible contributions as stated at Cargese. (9) 

3. MODELS 

The models discussed in this paper are distinguished by the scalar-field 
distribution function f(~b 2) in (2.1). In all our work below we choose the 
width of this distribution so that the second (cumulant) moment is unity; 
i.e., 

#2=f d~ qk2f(~b2)/f dO f(q~2)=l (3.1) 

With this normalization our definitions of certain models differ from the 
conventional ones by a rescaling of the inverse temperature parameter K. 

3.1. Spin-S Ising Model 

Of the many possible simple scalar models, probably the best known 
is the spin-S Ising model in which 3-dimensional quantum spins interact 
via the anisotropic coupling JS~S}. This model is equivalent to the scalar 
model (2.1) with the choice 

s 3 
f(~b 2) = ~ 6(~b + 2m x/Y), Y (3.2) 

m = - s  4S(S+ 1) 
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From the logarithmic derivative of the generating function (2.6) we easily 
derive 

d2n- 1 
]22n--dh2n 1 [-(2S-1- 1) x/y  co th [ (2S+  1) x f f  h i -  x/y coth x/y  h],,=o 

(3.3) 

which, by use of (2S + 1)2 = 1 + 3/y and the known expansion for coth x, 
we can also rewrite entirely in terms of the parameter y as 

#2n = [ ( 3 + y ) n  y n ] _ _  4nB2n 
(3.4) 

2n 

where the B2n a r e  the Bernoulli numbers. Because of the particular polyno- 
mial form of the moments in (3.4), the expressions (1.1) and (1.2) for Z and 
M2 reduce to the double power series of essentially triangular form 

z(K,y)=A ~ ~ K n i Amym-I 
n = l  m = l  ~ 

i Bmym_ M2(K, y ) =  ~ K n 1 
n = l  rn=l  ~ ' ]  

(3.5) 

Because the coefficients A m and B m for the spin-S models are not integers 
(though they could be expressed as rational fractions), they will not be 
presented here. Readers interested in these tables should consult the 
authors. However, the single variable series for S =  1/2, 1, 2, and ~ in 
dimensions 2 and 3 are given in the Appendix (Table I). 

3.2. Blume-Capel Model 

Another simple model that has been discussed in the literature and is 
useful for the study of tricritical behavior in addition to ordinary critical 
behavior is the Blume-Capel, or 3-state, model. (25) The distribution func- 
tion with our normalization (3.1) is 

f ( ~ 2 )  = 6(q~ + ~ )  + 2(y -- 1) 6(~b) + 6(~b - x/Y) (3.6) 

and its cumulant moments are given by 

d2o  sinh,/ih 
#2n _ d - ~ -  ~ [_ y----~ ~ c o s ~  ~yy h]h = ~ (3.7) 
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Explicit power series division in (3.7) shows that the ].22n for n > 1 can be 
generated recursively from the relation 

n-~ ( 2 n -  l "] 
u 2 ~  y, y.-1-m (3.8) 

m = 1 \2rn - 1) # 2 m  

Because the /~2, in (3.8) are of the same polynomial form as in (3.4), the 
Blume-Capel Z and M2 series are also expressible in the triangular form 
(3.5). The coefficients A m and B m for this model in both d =  2 and d =  3 are 
listed in the Appendix (Table II). Except for the A ~ = 1 entry in the tables 
for Z, rn varies from 1 to n for fixed n in each block of n values. Two checks 
are possible in that y = 1 is the S = 1/2 model, y = 3/2 is S = 1. The value 
y = 2 yields the l =  2 "loop model" mentioned most recently by Zinn- 
Justin. (7) In the neighborhood of some critical value K =  K~(y), y = y, > 2, 
the model is expected to display tricritical behavior. In the future one might 
attempt both to locate this point and deduce the expected logarithmic 
corrections that modify the classical (mean field) behavior in d = 3 .  
However for the present we believe it is more useful to deal with simpler 
models in which the mean-field point is purely Gaussian and its location is 
exactly known. 

3.3. Ising-Gaussian Interpolation Models 

One simple model that can interpolate between S =  1/2 Ising and 
Gaussian behavior is a model of classical, fixed-length, y-dimensional spins, 
again coupled anisotropically via JS~S}. In this case the equivalent scalar 
distribution is 

~(y _ r 3)/~, 
f(q~2) = ~ 0, 

JOI<,/Y 
I~b[ > w/y (3.9) 

which in the limit y ~ l becomes the S = 1/2 Ising distribution and in the 
limit y ~  oo becomes the Gaussian f oc exp(-~b2/2). In the interval 
l < y < o %  the model passes through the S = o o  Ising point at y = 3 .  
However, the power moments of the distribution, m2,-~f((b2)(j2ndq~, 
which can be determined recursively from 

y( 2n + 1) 
m2n+2-  - -  m2n (3.10) 

y +  2n 

are not polynomials in y and thus a simple triangular expansion as in 
(3.5) is not possible. Similarly, the 0 4 model (1) defined by f(~b 2) oc 
exp[cqb a-/~(e)~b4],/~(e) > 0, does not have a triangular expansion. 

822/6I/1-2-2 
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We have not bothered to tabulate single variable series for these 
models, but have instead concentrated on two other models which do have 
triangular expansions similar to (3.5). These models, the Klauder (26) and 
double-Gaussian, (23) or range, (27) also allow interpolation between S = 1/2 
Ising and Gaussian. A possible limitation is that they are not defined for 
temperatures below some critical value, i.e., K > K * ( y ) .  However, as this 
temperature is below the interesting second-order phase transition line 
K =  K,.(y), we feel they are useful nonetheless and hope that our work will 
trigger further investigations into their properties. 

3.4. K l a u d a r  M o d a l  

The Klauder model ~26) is defined by the distribution 

f(q}2)= I~lY/<*-y/ e-~,2/2(1 y) 

provided that 

(3.11) 

1 
K <  K * ( y )  - 2a(1 _ Y) (3.12) 

On the interval 0 <~ y ~< 1 the model interpolates between Gaussian and 
S = 1/2 Ising. Since the moments satisfy the recursion relations 

re=n+2 = (2n + 1 - 2ny)m2,, (3.13) 

the cumulant moments #2n are again polynomials of order n - 1 as in (3.4). 
It is, however, convenient to rewrite the expansion for Z and M2 for the 
model as 

2 n ".2 
K ~ ~ ym-- z(K, y)  = A~ + Am. ! 

n = l  r n = l  
(3.14) 

M2(K,  y )  = - -  K"  ym--1 
n = l  HI  m = l  

For d =  3 the coefficients A m and B~ are integers and are listed in Table III 
of the Appendix with precisely the same ordering as used for the 
Blume-Capel model series. 

Some properties of the Klauder model in the vicinity of the Gaussian 
line y = 0 can be determined fairly directly, as we illustrate below specifi- 
cally for d = 3 .  Note that at y = 0  all #2, for n > l  vanish and the 
propagator (2.3) is given by the free-field expression 

Go(q, K) = (1 - 8Kcos qx cos qy cos qz) - j  (3.15) 
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Corrections to this result can be derived systematically if we treat y as a 
small parameter. To obtain a complete description near the critical point 
the full machinery of renormalized perturbation theory should be used, but 
here we will only evaluate the leading y dependence of the critical line 
Kc(y), for which lowest order elementary perturbation theory is adequate. 
For small y the cumulant moments are given by 

~z2n+2 ~ ( - 2 ) "  n! y, n~>0 (3.16) 

Then the propagator to leading order in y is modified by a self-energy 
which is a sum of terms, each corresponding to a single vertex insert of 
order greater than two. Attached to the vertex of order 2n + 2 are n closed 
loops with symmetry factor 2"n !. Each loop contributes a factor given by 
the momentum integral 

( d3q 
I(K) =3(-~)3 [Go(q, K ) -  1] (3.17) 

and so the complete self-energy contribution is 

~A2n + 2 yI(K) 
L [I(K)]" - (3.18) 

n = l  2~n! 1 + I(K) 

The susceptibility is 

y (K)  .~1 -~ 
G(q, K) ,~ 1 - 8Kcos qx cos qy cos qz + 1 + I(K)] (3.19) 

and the critical Kc(y) is determined by the divergence of G(O, K). To 
leading order in y, 

yi(1/8) 
8Kc(y) ~ 1 + (3.20) 

1 +I(1/8) 

Numerically, 1(1/8) = (4/n 2) K2(1 /2) -  1 ~ 0.3982..., where here K(m) is the 
complete elliptic integral. (36) Note that the instability line as given by (3.12) 
is, to leading order in y, 

8K*(y) m 1 + y (3.21) 

and thus for y > 0, K C < K*. For y < 0, Kc > K* and Isingqike critical 
behavior cannot be observed in this regime. It is for this reason that we 
believe the model is not useful for the purpose originally envisioned by 
Klauder.(26) 
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3.5.  D o u b l e - G a u s s i a n  M o d e l  

The second very useful model with a triangular expansion is the 
double-Gaussian model defined by 

f(qS:) = exp [ (~b + ~ ) 2 ]  ~YY):I (3.22) 2 ( ' i - - - - ~ J + e x p  [ (~b-2(1 

provided the restriction (3.12) is again fulfilled. Also, 7 just as for the 
Klauder model, this model interpolates between Gaussian and S =  1/2 
Ising as y varies between 0 and 1. However, somewhat surprisingly, this 
model has an analytic continuation to the regime y > 1, which can be inter- 
preted physically and which we call the range model. The cumulant 
moments for the double-Gaussian model are simply related to the S = 1/2 
Ising moments , ,( '3- (4"-1)4nB2,/(2n) ,  given in (3.4), U' 2n  - -  

. = ,  
/12, - < -  (3.23) 

- -  I l~nst(1) 
k . Y  ~ 2 n  , E l >  1 

and the expressions (1.1) and (1.2) for Z and M 2 can therefore be written 

y )  = + m A ~ + 
n = l  m = l  

(3.24) 

M2(K'Y)= 2 Kn O~ _~..ym+l 
n = l  m = l  

The integer coefficients A7 and B m are listed in Table IV of the Appendix 
for d =  3. Within each block of n + 1 entries, m varies from 0 to n. Note 
that a 3-way sum rule check is possible between Blume-Capel, Klauder, 
and double-Gaussian tables by setting y = 1. 

An analysis similar to that described for the Klauder model can be 
used to determine the leading behavior of the critical line Kc(y ). In this 
case, (3.23) shows directly that the leading self-energy corrections involve 
only the fourth-order vertex insert at order y2 and the sixth-order vertex 
insert at order y3. We find 

G(q, K) ~ { 1 - 8K cos q~ cos qy cos q~ + y2I(K) - 2 9 [ I (K)]  2} -., (3.25) 

7 One can show that both models are members of a class of one-parameter models with tri- 
angular expansions for the series coefficients, all of which interpolate continuously between 
Ising and Gaussian limits. The moment generating functions G(h)=Jf(~)2)exp(-hfb)d(j 
for this class satisfy the second-order differential equation G"-(1  + 2)(1- y)hG'- 
[1 - 2(1 - y)2 h a] G = 0, with 0 ~< 2 ~< 1. The value 2 = 0 corresponds to the Klauder model 
and 2 = 1 to the double-Gaussian model. 
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which diverges at q = 0 when K =  KAy), where 

8Kc(y) ,~ 1 + y2I(~) - 2y3[I(~)] 2 (3.26) 

Again, for y > 0, Kc < K*, and so it is consistent to identify KAy) as the 
critical line. 

3.6. Range Model 

As observed by Baker and Bishop, (27) the partition function (2.1) in 
uniform magnetic field hi = h with the double-Gaussian distribution (3.22) 
can be written in the Ising-like form of a sum over discrete "spin" values: 

ZDG(K, y, h) 

"=- ~ 1--1 f dr {K ~nn r ~i (r  } (3.27) 

or 

where 

ZoG(K, y, h) 

: ZI(y) ~ ~ f &b/exp - ~  ~ (biMoq~ j 
{s i = • 1 } " ij 

(3.28) 

~" ddq M 1 - KVq (3.29) M o. = j ~ q exp[iq �9 ( r i -  rj)], Mq = 1 - y 

with Vq the "nearest" neighbor interaction (2.8). The prefactor ZI(y) in 
(3.28) does not depend on the field h and hence will not enter into the 
calculation of the susceptibility to be discussed below. The integration over 
the Gaussian field variables ~be is accomplished by first shifting ~bi to 
~bi + ~ j  M ]  1 [h + sj y 1/2/(1 -- y) ], where the inverse matrix M~: 1 is 

daq M 1 {exp[iq" ( r i - r j ) ] }  

= (1 - y )  au + K(1 - y)2  

x f  daq Vq exp[iq" (ri-- rj)] (3.30) 
(2~)  ~ 1 - K( y )  v .  
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We obtain 

t  331, 
and the argument of the exponential in (3.31) can be simplified, with the 
use of the result ~ j  M~ 1 = (1 - y ) / [ l  - 2aK(1 - y)],  to 

y si 
2 ( l _ y ) 2 ~ s i M o l s j + h x ~  l _ 2 d K ( l _ y )  

1 Nh2(1zy!  
+ 2 1 + 2dK(1 -- y)J  (3.32) 

where N is the number of sites in the lattice. Note also that the diagonal 
term ( l - y ) a o  in (3.30) will contribute a constant to the quadratic 
s iM~sj ,  which can be absorbed into the prefactor in (3.31) and change it 
to Z3(K, y). 

Let us now define an S = 1/2 Ising model with the "long'-range inter- 
action K'Jij(p), where 

j ~ ( p ) = f  daq Vq e x p [ i q . ( r i _ r : )  ] (3.33) 
(2re) d 1 - p Vq 

Provided [p[ < 2 -d, the interactions are exponentially damped with dis- 
tance; in the coordinate direction x, say, Jij~ e -xo/;~, where the range 2 is 
the solution of cosh(1/2) = 2-d/Ipl. For K' > 0, which we consider here, the 
"nearest" neighbor interaction is always ferromagnetic, as indeed are all 
interactions between a spin at the origin and a spin on the odd lattice sites 
(2/+ 1, 2m+ 1,...). However, the interactions between spins at the origin 
and even lattice sites (2/, 2m,...) are only ferromagnetic for p > 0; for p < 0 
these interactions inhibit ferromagnetic ordering. But since the total inter- 
action Y.jJo=2d/(1-2dp) is always ferromagnetic, the model is only an 
example of a partially frustrated ferromagnet in the regime p < 0. The parti- 
tion function for this model, which we call the range model, is defined as 

Z R ( K '  , p, h ' )=  ~ exp I1K '  ~ sJ~(p)s, + h' ~ s~l (3.34) 
{s i  = • 1} L/'' ij  i ) 

and on comparing (3.34) with (3.31) and (3.32) we find 

In ZI~O (K, y, h) = in ZR(Ky, K( 1 - y), x/Y h~ [ 1 - 2dK( 1 -- y) ] ) 

+ � 8 9  (3.35) 
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That is, except for some trivial additive functions, the double-Gaussian and 
range model free energies are equal, provided we make the parameter iden- 
tifications 

K'=Ky,  p.=-K(1 - y ) ,  h ' -  ~ h  (3.36) 
1 - 2dK(1 -- y) 

By differentiating (3.35) twice with respect to field, we find 

y 1 - y  

goG = [1 - 2aK(1 - y)]2 gR + 1 -- 2aK(1 -- y) 
(3.37) 

which implies that Zg has the expansion 

z R ( K , y ) = I +  E K" ~ R'~ym (3.38) 
n = l  r n ~ l  m . l  

The coefficients R m are given in terms of the coefficients A m of the double- 
Gaussian expansion (3.24) by 

m d n  m 2d+ m -- 1 R , = 2  6 m ~ + A , -  1(Am l - m A , _ l )  

2d m 2m ~ " - 1 + 2  JAn_ 2 -  "~n 2 + m ( m - 1 ) A m s  (3.39) 

with the proviso that the A~ on the right-hand side are set to zero 
w h e n e v e r [ < l  o r k < l  o r k > / .  

As stressed above, the range model analytically continues the double- 
Gaussian model to the region y > l  provided that ( y - 1 ) K < 2  -a. No 
analysis of the series (3.38) have been performed to date, but an estimate 
of the critical line Kc(y) has been obtained for d =  3 by a crude least- 
squares fit to double-Gaussian model approximants in the range 
0.5 < y ~< 1. Our approximation is 

K c ~(y) ~ 8 - 3.05602y 2 + 2.96137y 3 - 2.5771y 4 + 1.274y 5 - 0.248y 6 (3.40) 

The coefficients of y2 and y3 were not fixed in the fit and yet are within 4 % 
and 14%, respectively of the exact values given in (3.26). The estimate 
(3.40) intersects the model boundary K -1 = 8 ( y - 1 )  at y ~  1.6, and thus 
critical behavior over the wide range 1 < y ~< 1.6 remains to be explored by 
single-variable series analysis. On the other hand, since Chen et al. (~3) could 
clearly identify only a single Ising-like multicritical point in the range 
0 < y < l . 8  for the double-Gaussian model, universality of critical 
exponents is to be expected. 
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4. DOUBLE-GAUSSIAN SERIES ANALYSIS 

The analysis described in this section is based on the method of con- 
fluent inhomogeneous second-order differential equations discussed by 
Rehr et al. (28) Its utility lies in the fact that it may lead to a significant test 
of the universality hypothesis. As discussed in Sec. 1, the method biases the 
unknown functions of interest to have the appropriate leading critical 
behavior (1.4) which, although not of the scaling form discussed by 
Wegner, (3~ should be adequate, provided higher order terms in ( K , -  K) n~ 
and other corrections proportional to ( K c - K )  ~176 On>O, are small or 
can be incorporated into the analytical factors AF(K ) and aF(K) or an 
"effective" background BF(K ). 

We have analyzed in detail the three-dimensional double-Gaussian 
model discussed in Sec. 3, which we believe is typical of models that inter- 
polate between spin-l/2 Ising and Gaussian limits. Of course, we 
investigate the model only at a discrete set of parameter values. These are 
chosen so that the width of each Gaussian in the distribution (3.22) is an 
integer multiple of 0.05, i.e., 

co ~ xf l  - y = 0.05n (4.1) 

We could only successfully determine approximants with the critical 
behavior (1.4) in the range 0 ~< co ~< 0.70; presumably for larger co the higher 
order terms ( K c - K )  n~ or other confluent corrections are so large that the 
fact that (1.4) is not of scaling form is significant. If 0=0.5  exactly, (1.4) 
would in principle contain such terms. Also, because the double exponential 
fitting problem is so unstable, we limited ourselves to the biased problem 
in which OF = 0 is fixed in (1.4). If a common 0 can be found for which the 
)~F are independent of co, then, in a limited sense, we will have verified one 
aspect of universality. 

The approximations to )6 M2, and ~2 oc M2/)~ which have the con- 
fluent asymptotic critical behavior (1.4) are determined as the solutions of 
the second-order differential equation 

[Q2(K) D2 + QI(K) D~ + Qo(K)] F(K) = P(K) (4.2) 

where the Qi(K) and P(K) are polynomials in K with QI(K) and Qz(K) 
forced to take the factorizable form 

QI(K )= (Kc -K)QI (K)  Qz(K)=(Kc-K)2(Kc+K)Q2(K)  (4.3) 

The Di in Eq. (4.2) are differential operators in K of order i, and the coef- 
ficients in the polynomials Qi(K) and P(K) are fit so that (4.2) is satisfied 
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as a power series to some order K N. In addition to the Rehr et aL (28) choice 
for the differential operators 

,4 
D1 = K -2-~ D 2 = D12 (4.4) 

dK 

we have used others, such as 

d D2 fD~ (4.5) 
D I =  d-K = ( K D  2 

Finally, we have restricted our choice of approximants to those in which 
the degrees of the Qi(K)  are roughly comparable. The essential difference 
between our differential approximants and those of Guttmann (2~ is the 
inclusion of the constraints in Eq. (4.3). Without these constraints, the 
solution of Eq. (4.2) generally consists of a single power-law singularity 
together with analytic factors and background terms, i.e., a solution which 
ignores non-analytic confluent singularities. 

The numerical procedure for determining the critical constants in (1.4) 
is straightforward. For  fixed Kc in (4.3) the remaining coefficients in Qi and 
P are obtained from the solution of a set of linear equations. Solutions in 
which the function Q2(K) has zeros in the disk IKI < Kc or near K C are con- 
sidered "defective" and ignored. Knowledge of the polynomials Qi(K)  suf- 
fices to determine ~)F and O F directly as the solutions of a quadratic indicial 
equation. (28) As already observed for the spin-S Ising model, (9) very 
reproducible correlations between ~,~ and 0 F are found as Kc is varied. To 
fix 0 F = 0 and hence determine our biased ]2 F estimates, we employ a 
Newton-Raphson search which starts with Kc near the critical line given by 
(3.40). Occasionally, no real solution to this nonlinear problem can be 
found. For  0 in the neighborhood of 0.5 most final estimates of K c at order 
K 21 lie within 5 • 10-6 of the value (3.40) for 0 ~< co ~< 0.70. The dispersion 
in these estimates is much smaller at about +2  x 10 -6. The use of several 
different choices of differential operators D~ has proved to be important. 
For reasons we do not understand, for some parameter ranges many 
approximants can be found for some particular choices of D~, but not for 
others. The amplitudes A F and a F in (1.4) can be obtained by integrating 
the differential equation (4.2) numerically, starting with the known initial 
conditions at K = 0 .  A simpler and faster procedure, (2s) which we have 
adopted here, is to use the differential equation (4.2) to generate two power 
series representations of F(K), one about K = 0 ,  the other about K =  Kc. 
The expansion about K =  0 agrees with the known series through the order 
used (e.g., 21) and thereafter simply extends this series to higher order, 
while the expansion about K =  Kc depends linearly on the two unknown 
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amplitudes A F and  A F a F  . These series can be used directly to evaluate the 
function in the interval 0 < K < Kc and matching F and  dF/dK at some con- 
veniently chosen intermediate  K then determines Ae and  a v. 

We have included in Table V of the Appendix 50-term series obta ined 

from two representative differential approximants  to the 21-term sp in- l /2  
Ising model  susceptibility series: xd/dxE9, 6, 9; ~b] and  d/dx[7, 6, 7; 1]. We 

hope these series will prove useful in tests of other methods of confluent 
singulari ty analysis. The series coefficients satisfy 9-term recurrence rela- 

(a )  

1.25 1.24 ,,, 1.25 

n = 1 8  . . , , i  i~ 
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Fig. 2. (a) Number of homogeneous approxlmants to 7.(oJ) yielding a particular 7 with a 
resolution 2 x 10-4, with a fixed correction-to-scaling exponent 0 = 0.55. Results, cumulative 
over co=0, 0.05,..., 0.70, show overall convergence with order; (b) As in (a), but showing 
instead estimates of 1 -  e within a resolution 2 x 10 -3 from the antiferromagnetic singularity 
in 7.; (c) Again, estimates of 7 from 7.. Here 0=0.50 and n=21 are fixed. The order of the 
inhomogeneous term PL in (4.2) varies from L = ~b (PL null) through L = 2 as indicated. 
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tions of the form ~ 0  Q(i, j ) ( n - j )  i c ( n - j )  = P(n), from which additional 
terms can be calculated. 

Two important trends are apparent when all the data for 0 ~< co ~< 0.70 
are combined into a single output. The first is convergence with order; in 
Figs. 2a and 2b we show histograms of the number of biased homogeneous 
( L =  r differential approximant estimates for 7 and 1 - ~  with 0=0.55  
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based on ~ series to order K ", n = 16, 17 ..... 21. We note that even forcing 
a correction-to-scaling term, as we have done by using (4.2), does not 
guarantee converged estimates if the series length is too short. Consistency 
suggests that only the n =  19, 20, and 21 estimates for 7 represent the 
asymptotic value. It is interesting but probably coincidental that also no 
significant estimate of 1 -  ~ can be made until n >/19. The second impor- 
tant trend results from allowing for a nonvanishing polynomial P(K) in 
(4.2). In Fig. 2c we show biased estimates 7 with 0 = 0.50, with P ranging 
from null (L = ~b) to finite order L = 0, 1, 2. There is a significant drop in 
the estimate of 7 in going from L = ~b to 0 or 1, while at l = 2 the dispersion 
in the estimates begins to increase. Since we have no a priori reason for 
believing the background B F in (1.4) should be zero and hence P null, and 
because they tend to reduce the scatter and improve overall consistency, we 
base most of our quantitative estimates in the following on L =  1 
inhomogeneous differential approximants. 

Detailed results explicitly showing variations with co are displayed in 
Figs. 3-6. Figures 3 and 4 are histograms of the number of biased estimates 
of ~ for each value of co separately; Fig. 3 illustrates convergence with 
order, while Fig. 4 illustrates the effect of inhomogeneous terms in the dif- 
ferential equation (4.2). In both figures we also show the effect of changes 
in 0 between 0.50 and 0.55 at order K 21. We find that 7 correlates positively 
with 0 for small co and anticorrelates with 0 for large co, in qualitative 
agreement with the spin-S Ising results. (9) Our "best" approximants are 
those obtained with the polynomial P of order L = 1; those based on the 
operator choice (4.5) are shown in Figs. 4c and 4d for 0=0 .50  and 0.55. 
From this and additional data based on the choice (4.4) we conclude that 
universality is best satisfied with 

7 = 1.237 ___ 0.002, 0 x = 0.52 _+ 0.03 (4.6) 

The error bars are subjective, but, we believe, reasonable. In particular, the 
very distinct downward trend of 7 with increasing co shown in Fig. 4d 
makes any value 0 > 0.55 unreasonable if universality is assumed. On the 
other hand, 0 slightly smaller than 0.50 is probably not excluded by the 
data shown in Fig. 4c, especially if the estimates for co/> 0.60 are excluded 
as unreliable. Such exclusion might be reasonable, since the amplitude a x 
is large in this regime and the form (1.4) is likely first to become inade- 
quate there. Finally, the estimate (4.6) is lower than our preliminary spin-S 
estimate 7 = 1.239 + 0.002 almost certainly because of our present reliance 
on inhomogeneous approximants. Figure 5 shows histograms of biased 
estimates of 2v determined from M2/g = 242 approximants. Again, from the 
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Fig. 3. Histograms, centered on discrete co, of the number of homogeneous approximants to 
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and are a detailed breakdown of some of the cumulative results in Fig. 2a. The result of 
changing to 0 = 0.50 with n = 21 is shown in (d). The equivalent cumulative result is shown 
in Fig. 2c. 
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L = 1 data shown in Figs. 5c and 5d and from additional data based on 
(4.4), we conclude that universality is best satisfied with 

2 v =  1.260+0.003,  0~ = 0.51 ___0.03 

The consistency between 0~ and 0 z is noteworthy. 
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fixed 0 = 0.50 and are a detailed breakdown of some cumulative results in Fig. 2c. The result 
of changing to 0=0 .55  with L =  1 is shown in (d). The solid horizontal lines in (c) and (d) 
indicate the bounds in our estimate V = 1,237 + 0.002. 
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Finally, Fig. 6 shows histograms of  1 -  a based on both )~ and M2/Z 
series. A correction-to-scaling term is not built into the antiferromagnetic 
singular point  in (1.4) and hence the substantial deviations from universal 
behavior  are not  surprising. F r o m  the low-co regime we conclude that  

c~= 0.11 ___0.02 (4.8) 

which agrees with the value given by the hyperscaling relation, ~ = 2 -  3v, 
using the estimate (4.7); however, the precision is not  sufficient for a 
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Fig. 5. Histograms of 2v estimates based on approximants to ~2 with the choice (4.5). Plots 
(a)-(d) show variations with n, L, and 0 as labeled. Resolution in 2v is 4 x 10 -4. The solid 
horizontal lines in (c) and (d) indicate the bounds in our estimate 2v = 1.260 + 0.003. 
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definitive test. At the particular value o)=0.31 (i.e., y * =0 .9 0 )  our 
approximants yield 1 -ez=0 .895+_0.01 ,  in good agreement with the 
estimate of ref. 19. While the hyperscaling relation c~ = 2 -  3v is satisfied 
better at this value of on, drawing conclusions about the validity of hyper- 
scaling based on a single series estimate may be misleading. 

From (4.6) and (4.7) we deduce t/ = 2 -  7/v = 0.036 _+ 0.006, if we 
assume that the errors in 7 and v are uncorrelated. However, this is not 
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Fig. 2b. The solid horizontal  lines in (d) indicate the bounds  in our  estimate ~ = 0.11 _+_ 0.02. 
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realistic, since we observe strong linear correlation with nearly equal slopes 
between the pairs 7 and Kc, and 2v and Kc. If w.e impose the obvious con- 
straint that g and M2/Z have the same Kc, we find 2v - 7 = 0.0226 + 0.0004 
and hence 

~/= 0.0359 __ 0.0007 (4.9) 

This value is consistent with the latest field-theoretic results from ref. 4, 
q~0 .0365+0 .003 ,  and marginally consistent with the series estimate 
from ref. 18, t/ ~ 0.0375(10) (again doubling those authors '  one-standard- 
deviation error estimates). Note that our best estimates of 7 and 2v in 
Eqs. (4.6) and (4.7) are also consistent with this constraint on Kc; with 
7 = 1.237 we obtain 2v = 1.2596___ 0.0004; and with 2v = 1.260 we obtain 
7 = 1.2374 + 0.004. 

Precise and meaningful values for the correction-to-scaling amplitudes 
cannot be given without first specifying the critical exponents. We show in 
Figs. 7a and 7b the very nearly linear correlations between a z and 7, and 
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(a) (b) 
Fig. 7. Correction-to-scaling amplitudes. (a) Correlation plot a z versus 7 from Z 
approximants with the choice (4.4) and 0 =0.50; (b) correlation plot of ar versus 2v from ~z 
approximants with the choice (4.4) and 0 = 0.50. 

822/61/1-2-3 



3 2  N i c k e l  a n d  R e h r  

ar and 2v, obtained from our inhomogeneous approximants with L = 1 
and 0 = 0.50. Thus, with the central values in (4.6) and (4.7) we find that 
the leading correction to scaling vanishes consistently for Z and M2/Z at 
co = co*, y = y* with 

co* =0.39, y* =0.85 (4.10) 

With the Chen et al. (13) central estimate of y * =  0.87 we obtain from Fig. 7 
the value 7 ~ 1.2383, consistent with their result (1.2385), and predict 
v~0.6311. Similarly, with y * = 0 . 9 0  of ref. 19, we obtain 7~1.2395 and 
v ~ 0.6322, which are again consistent with their estimates. Note, however, 
that with these higher values for the exponents 7 and v, r /~ 0.0379 and 
0.0396, respectively, which is no longer consistent with the value in (4.9), 
obtained by demanding Kc equality. The consistency of our results gives us 
additional confidence in the validity of our estimates. If we were to make 
the now unreasonable assumption that corrections to scaling vanish for the 
spin-l/2 Ising model, we would find 7 ~  1.243, in agreement with the 
analysis by Ferer and Velgakis (16) based on a 5-fit method or Guttmann (2~ 
based on nonconfluent differential approximants; similarly, we would find 
v ~ 0.635. Again, with our own central estimates 7 = 1.237, 2v = 1.260, and 
0 = 0.52, we obtain from Fig. 8 the spin-l/2 Ising estimates of the correction- 
to-scaling amplitudes 

a z=  -0 .13 ,  ar - 0 . 2 2  (4.11) 
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Fig. 8. Correction-to-scaling amplitudes. Estimates of a x ( x ) and 0.60a~2 ( O )  versus co 
from Fig. 7 assuming 7 = 1.237, 2v = 1.260, and 0 = 0 . 5 0  (solid line); and from a similar plot 
assuming 7 = 1.237, 2v = 1.260, and 0 = 0.55 (dashed line). 
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and 

ar = 1.70 (4.12) 
a z 

This same ratio estimate applies to within a few percent for all co ~< 0.5, as 
can be seen from our plot of a z and 0.60a~2 versus co in Fig. 8. For co/> 0.5 
this ratio drops considerably and could conceivably agree with the con- 
tinuum ~b 4 model estimate (32) of 1.30_+0.10 in the neighborhood of the 
Gaussian point. As discussed in Section 1, this model dependence of the 
amplitude ratio is one of the indications we have for a possible absence of 
universality. However, given the latest continuum model estimates, (4) the 
value 1.30 may well be suspect. 

Of course it is worth recalling from Fig. 2 that systematic trends in 
many of our estimates are apparent through order K 19. It is only because 
of the apparent stability of estimates based on 19-, 20-, and 21-term series 
and the internal consistency of results for Z and ~2 over a range of co that 
we can have any confidence at all in our estimates. Also, the low-co regime, 
and in particular the spin-l/2 Ising limit, remains notoriously difficult to 
analyze. Even at order K 21, the estimates for ~ are typically bimodally dis- 
tributed, as can be seen in Fig. 4. Finally, there is still a fairly large uncer- 
tainty in the value of 0 and in the correction-to-scaling amplitude ratios. 
Thus, there is still very considerable justification for attempting to obtain 
even longer series. 

5. EXTENSION OF SERIES 

In the conclusion of the preceding section we discussed how the ques- 
tion of universality is not fully resolved and why there is justification for 
attempting to extend the available series even further. Extension by two 
orders in K is unlikely to lead to any significant change in these conclu- 
sions; extension by five or more orders in K is almost certainly impossible 
with the techniques and computer resources now available. Thus, the dis- 
cussion below assumes as a reasonable goal the extension of the series to 
order K 25. At this order the array Cm used in the program segment 
described in Section 3 can still be packed onto a single 32-bit word, and the 
graph weights w can probably still be handled exactly as integers with the 
IBM quadruple-precision facility. Thus, large sections of the present 
program still can be employed without major modification. 

Two features of the present program, however, must almost certainly 
be modified or at least receive serious attention. The first feature is 
apparent when we estimate the storage requirements for a naive extension 
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of the calculation by the program segment described in Section 3. The 
number of entries of 2-rooted, 1-irreducible contributions in each order n 
for n=  1, 3, 5 ..... 19, and 21 are 1, 2, 5, 19, 81, 353, 1619, 7704, 38,353, 
204,854, and 1,055,792. Extrapolation suggests 6 x 10 6 and 35 x 10 6 entries 
at orders 23 and 25. At 32 bytes/entry the order-25 list would require some 
thirty 40-megabyte tapes for storage. However, as discussed in Section 3, 
each entry contains the information necessary to obtain the complete 
embedding constant array ek. If we restrict ourselves a pr ior i  to calcula- 
tions of Z and M2 only, then the complete arrays ek at high order are not 
required and a very considerable increase in packing density should be 
possible. 

The second feature, which we believe will be the more difficult to 
modify significantly, is the time required for the generation of the elemen- 
tary 2-rooted, 2-irreducible graphs. Our present program generates these 
graphs recursively by using the slightly modified Heap rules(37): (1) Join 
any two existing vertices with a new bond, provided the vertices are not 
already linked by a bond; (2) insert a second-order vertex on any existing 
bond and join it to an existing vertex with a new bond, provided again that 
the vertices are not already linked by a bond; and (3) insert two second- 
order vertices on distinct existing bonds and join these by a new bond. The 
modifications we have introduced are for the purpose of excluding graphs 
with multiple bonds. 

Finally, we use as the starting graph for this process the 2-rooted 
elementary graph shown in Fig. 9a and supplement the three Heap rules 
with the following: (4) Do not join the two root vertices with a new bond. 
We can prove that this algorithm will generate all elementary graphs by 
showing that for any elementary graph other than the starting graph, at 
least one bond can be removed which will leave the resulting graph elemen- 
tary. For example, for the graph shown in Fig. 9b, any one of the four 

1@4"/  / 1 / 
f f /  

(a) (b) 
Fig. 9. Two elementary 2-rooted, 2-irreducible graphs with vertex assignments obtained 
from the algorithm described in the text. Each edge will eventually be replaced by a "nearest" 
neighbor bond or a 2-rooted, 1-irreducible segment in the bond renormalization section of the 
graph generating program. 
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bonds joining vertices 2-3, 2 4 ,  2-5, or 3-6 can be removed. Of course, this 
also shows that the graph in Fig. 9b will be generated four separate times 
on application of the Heap rules to lower-order graphs. Since for a general 
high-order graph almost all bonds can be so removed, the Heap rules are 
very inefficient, because of duplication. To obtain the 7 x 10  6 graphs 
estimated in Section 3 for an order-K 2s calculation, probably in excess of 
108 graphs must first be generated. We believe that to make an order-K 2s 
calculation feasible, a more efficient algorithm to replace the Heap rules is 
required, and we hope some reader will be interested in this challenging 
theoretical design problem. Ideally, all duplication should be avoided by 
such a new algorithm; if this is not possible, one will still require an 
efficient algorithm for uniquely identifying each graph so that a tabular 
search can be initiated. 

The algorithm we used for graph identification is probably adequate 
and is easily described. We begin as our step 1 by labeling the roots 1 and 
2 in both possible ways. Internal vertices are labeled 3, 4 .... in subsequent 
steps. Now in general, at the completion of step n - 1, where n = 2, 3,..., dis- 
tinct labelings of the first n vertices will have been kept in store as possible 
candidates for further testing. To accomplish this testing at step n, we first 
scan through the labeled vertices in the first member of our candidate list 
in search for the largest vertex which is connected to as yet unlabeled ones. 
Having found this largest, say m ~< n, we proceed to assign n + 1 in turn to 
every unlabeled vertex that is connected to it. For  each assignment we form 
the integer string mlk.., of labeled vertices that are connected to n + 1 with 
the convention m > l >  k > . . . .  Then, of all possible labelings at this step, 
we keep in a temporary list those that maximize in turn l, then k ..... Since 
the strings to be tested will in general be of varying length, we need to 
imagine for this maximization that each string mlk.., is supplemented on 
the right with trailing zeros. As an example, the possible strings at n = 4 
are, in order, 4 3 2 1 > 4 3 2 > 4 3 1 > 4 3 > 4 2 1 > 4 2 > 4 1 > 4 > 3 2 1 > 3 2 >  
31 > 3; the remaining 21 > 2 > 1 never occur. 

Having found the maximal string and associated (temporary) labelings 
for the first member in our candidate list, we proceed through the rest in 
a similar fashion. Either we find a smaller string, in which case the new 
vertex assignment is discarded, or we find a string greater than or equal to 
the previous maximal. If greater, all preceding temporary lists are discarded, 
but in both this and the equals case the new labeling is incorporated as 
part of our (temporary) list. On testing completion this list becomes the 
possible candidate list for step n + 1. Note that the discard process makes 
the algorithm relatively efficient; each list length is the symmetry number 
of the partially labeled graph and this typically is quite small. 

When the labeling is finally complete, we use as the unique graph 



36 Nickel and Rehr 

identifier the composite integer string formed from the individual strings 
generated at n = 2, 3 .... and listed from left to right with a single 0 between 
string segments. As an example, the algorithm generates the unique strings 
210321 and 210320420531 for the graphs in Fig. 9. Furthermore, it shows 
that the corresponding labeling in Fig. 9b is unique, whereas the labeling 
in Fig. 9a is only one of four symmetry equivalent ones--essential informa- 
tion for the subsequent bond renormalization segment of our program. 

Given the integer strings generated as described above, graph com- 
parisons are easily made by an individual integer-by-integer comparison or, 
equivalently, by number comparison where each graph is the single number 
that is the string in a system with an appropriate radix. For a list of all 
elementary graphs of ~<25 bonds, a radix />17 is necessary, but in fact, 
such a complete list is not required and radix 16 is both adequate and 
convenient for packing all strings on at most five 32-bit words. 

The elementary list reduction comes from the fact that for a calcula- 
tion of zero-field Z and M2 on the bcc lattice family, every elementary 
graph must, after bond renormalization, contain only even-order internal 
vertices and even loops so that it can be embedded on a linear chain or a 
pair of nearest-neighbor sites. For example, the even-order vertex require- 
ment can be achieved by doubling bond 3-4 in Fig. 9a and bonds 1-6 and 
4-5 in Fig. 9b. The even-loop requirement can be achieved by the insertion 
of a second-order vertex on bond 3-4 in Fig. 9a and on bonds 1-3 and 2-4 
in Fig. 9b. Other doublings and insertions may also work, but in any case 
the graphs in Fig. 9 cannot contribute at orders lower than the "true" 
orders defined by the addition of these minimal doublings and insertions to 
the direct bond counts, i.e., 5 + 1 + 1 = 7 and 9 + 2 + 2 = 13. These "true" 
orders are the ones used for the graph counts given in Section 3, but the 
Heap rules were not completely successfully supplemented to avoid 
redundancy by generating graphs of too high "true" order. 

In summary, we believe the derivation of an efficient algorithm to 
replace the Heap rules for graph generation represents a challenging 
theoretical problem whose solution would be of great practical use in 
making possible the extension of the series now available. 
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A P P E N D I X  

Spin-S ,  B l u m ~ C a p e l ,  K l a u d e r ,  a n d  d o u b l e - G a u s s i a n  series coeff icients  

(Tab les  I - I V )  a n d  r ep re sen t a t i ve  di f ferent ia l  a p p r o x i r n a n t s  (Tab le  V). 
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