High-Temperature Series for Scalar-Field Lattice Models: Generation and Analysis

Bernie G. Nickel ${ }^{1}$ and J. J. Rehr ${ }^{2}$

Received May 18, 1986; final May 16, 1990

Abstract

An implementation of the free-embedding scheme for high-temperature series generation on the body-centered cubic family of lattices in arbitrary dimension d is described. Series to order 21 in inverse temperature are tabulated for several scalar field models, both for the magnetic susceptibility and for the second moment of the spin correlation function. The critical behavior of a family of 3-dimensional "double Gaussian" models, which interpolate continuously between the spin-1/2 Ising model and the Gaussian model, is analyzed in detail away from the Gaussian model limit using confluent inhomogeneous secondorder differential approximants. With our best estimate of the correction-toscaling exponent, $\theta=0.52 \pm 0.03$, the leading exponents for the susceptibility and correlation length for this family are consistent with universality and are given by $\gamma=1.237 \pm 0.002$ and $\nu=0.630 \pm 0.0015$, respectively, and $\eta=2-\gamma / v=0.0359 \pm 0.0007$.

KEY WORDS: Ising model; series generation; series analysis; critical
exponents; universality.

1. INTRODUCTION AND SUMMARY OF RESULTS

Estimates of critical exponents deduced from high-temperature series on 3-dimensional lattices have been puzzling for a number of years. Contrary to the expectations of renormalization-group theory, there has been evidence both for the failure of hyperscaling ${ }^{(1)}$ and the absence of universality. The latter is suggested by a discrepancy between the "classical" estimates of the susceptibility exponent $\gamma=1.250 \pm 0.003^{(2)}$ and the correlation length exponent $v=0.638_{-0.001}^{+0.002},{ }^{(3)}$ and the most recent space

[^0]continuum ϕ^{4}-model estimates. ${ }^{(4)}$ These are $\gamma=1.241 \pm 0.002$ and $v=0.6300 \pm 0.0015$, based on Borel resummation of coupling constant perturbation expansions, and $\gamma=1.2390 \pm 0.0025$ and $v=0.6310 \pm 0.0015$, based on Borel resummation of ε-expansion series supplemented by exact results in two dimensions. However, the numerical arguments for or against hyperscaling and universality appear to depend on the method used to analyze series expansions of limited length. Each method inevitably builds in particular "function biases" and, as a consequence, yields analysisdependent results. ${ }^{3}$ It is therefore hoped that with longer series, less func-tion-biased analyses might be undertaken which will either confirm, say, the absence of universality or resolve the apparent discrepancies and show how they arose from certain biases.

Although the prospects for extending these series for general 3-dimensional lattices are not encouraging, a great simplification in the high-temperature series generation process is possible for the body-centered cubic (bcc) lattice. ${ }^{(5)}$ Exploiting this simplification, Nickel reported new 21-term spin-1/2 Ising series for the susceptibility and correlation length at Cargèse in $1980 .{ }^{(9)}$ Also reported was a preliminary analysis of these and corresponding higher-spin- S series which showed that the "classical" exponent estimates were seriously in error and that the new estimates appeared to be consistent with universality. Since then, series for other models have been derived and many more analyses ${ }^{(10-21)}$ of these bcc series have been reported; ref. 21 contains a recent discussion. Here we finally (!) report the details of this series derivation, tabulate series coefficients for models we hope will be of general interest, and present an analysis which in preliminary stages was reported at Stat Phys XIV, ${ }^{(22)}$ Rutgers, ${ }^{(23)}$ and APS ${ }^{(24)}$ meetings.

Our analysis is based on confluent inhomogeneous second-order differential approximants which, by allowing for a correction-to-scaling term in a simple form and an analytic background, can (potentially) yield an unbiased test of universality. However, in practice we can only obtain the high precision of about three decimal places for γ and v and not quite two decimal places for the correction-to-scaling exponent θ by comparing different models and "forcing" universality by a best-fit procedure. As opposed to other methods of series analysis which usually focus on a single thermodynamic quantity, our approach uses both susceptibility and correlation-length series and makes use of several internal consistency checks to help reduce the effects of function bias. Our best estimates of the critical exponents are consistent with (1) a common correction-to-scaling

[^1]exponent θ for a family of models; (2) the same critical temperature for both the susceptibility and correlation length series for a given model; (3) a common value of y^{*}, i.e., the model parameter at which the leading correction-to-scaling vanishes; and (4) universality of the subdominant amplitude ratio. The use of confluent approximants is essential to our method; Guttmann ${ }^{(20)}$ also carried out a differential approximant analysis without explicitly including a confluent singularity in each approximant and obtained rather different results. Inhomogeneous approximants have been found to be particularly important in reducing the overall scatter of the critical exponent estimates, especially for the ξ^{2} series. Such inhomogeneous approximants automatically incorporate an analytic background and remove spurious effects of the leading terms in a series. The effect of the inhomogeneous term on critical exponent estimates is a reduction of about 0.002 in both γ and $2 v$. Our results are, within error limits, consistent with other analyses that are also unbiased in their exponent choices and that explicitly depend on model comparisons. ${ }^{(13)}$ A common conclusion is that for the spin- $1 / 2$ Ising model, the correction-to-scaling term, though small, cannot be neglected. On the other hand, our conclusion is similar to that reached by Zinn-Justin ${ }^{(10)}$ and is worth stressing; namely, that even with the long series now available, any analysis based solely on the spin-1/2 series cannot predict the presence of a correction-to-scaling term. ${ }^{4}$

A summary of this paper in somewhat more detail is as follows. As mentioned in ref. 5 , the evaluation of graph embedding constants, which for most lattices is the most time-consuming part of the series calculation, becomes almost trivial on the family ${ }^{5}$ of d-dimensional lattices for which the interactions couple fields bilinearly on lattice sites separated by any of the 2^{d} vector displacements $(\pm 1, \pm 1, \ldots, \pm 1)$. Another consequence of this factorization is that the high-temperature susceptibility series can be written as

$$
\begin{align*}
\chi(K)= & \sum_{n=0} \frac{1}{n!} K^{n} \sum_{\sum i m_{i}=n+1}\left(\prod_{i=1}\left(\mu_{2 i}\right)^{m_{i}}\right) \\
& \times \sum_{g}\left[E_{g}\left(\left\{m_{i}\right\}\right)\right]^{d} W_{g}\left(\left\{m_{i}\right\}\right) \tag{1.1}
\end{align*}
$$

${ }^{4}$ Both Mellin transform ${ }^{(11)}$ and 5-point fits ${ }^{(16)}$ fail to find significant corrections for the spin-1/2 case. The trend of the $D \log$ Padé estimates ${ }^{(9)}$ is suggestive of a correction, but of course each approximant specifically excludes such a term. Finally, for spin $1 / 2$, secondorder differential approximants ${ }^{(22)}$ fit just as easily with $\theta \equiv \gamma$, i.e., an analytic background, as with $\theta \approx 0.5$.
${ }^{5}$ This "bcc family" includes a pair of sites $(d=0)$, the linear chain ($d=1$), the simple quadratic lattice ($d=2$), the bcc $(d=3)$, and higher-dimensional generalizations. The basis for the simplification is a factorizability described in Section 2, which reduces the d-dimensional embedding calculation to that in one dimension.
and the second moment of the 2 -point correlations as

$$
\begin{align*}
M_{2}(K)= & \sum_{n=0} \frac{1}{n!} K^{n} \sum_{\sum i m_{i}=n+1}\left[\prod_{i=1}\left(\mu_{2 i} m^{m_{i}}\right]\right. \\
& \times \sum_{g}\left[E_{g}\left(\left\{m_{i}\right\}\right)\right]^{d-1} F_{g}\left(\left\{m_{i}\right\}\right) W_{g}\left(\left\{m_{i}\right\}\right) \tag{1.2}
\end{align*}
$$

where K is the inverse temperature and $\left\{\mu_{2 i}\right\}$, the cumulant moments of the single-site field distribution [see Eqs. (2.1) and (2.6)], are the physical model-dependent parameters; the dimension d appears only as an exponent, while the remaining quantities are integer constants that can be given a graphical interpretation. In particular, the m_{i} are the number of vertices of order $2 i$ in 2 -rooted graphs of type $g ; E_{8}\left(\left\{m_{i}\right\}\right)$ is a one-dimensional embedding constant or zeroth moment in root separation, while $F_{g}\left(\left\{m_{i}\right\}\right)$ is the second moment in root separation. $W_{g}\left(\left\{m_{i}\right\}\right)$ is a sum of symmetry-related weight factors of all graphs with the same embedding constant moments E_{g} and F_{g}. A few technical details of the computer program that determines these integer constants through order $n=21$ are also described in Section 2.

The data for χ and M_{2} for the order K^{21} calculation comprise nearly 100,000 entries of the constants E_{g}, F_{g}, and W_{g} and can be conveniently transferred only via magnetic tape. To make these results more directly accessible, we specialize the general scalar models, characterized by the set of cumulant moments $\left\{\mu_{2 i}\right\}$, to models in which the single-site field distribution is parametrized by a single variable y. The series for χ and M_{2} can then be written as

$$
\begin{equation*}
\chi(K, y)=\sum K^{n} A_{n}(y), \quad M_{2}(K, y)=\sum K^{n} B_{n}(y) \tag{1.3}
\end{equation*}
$$

Furthermore, a number of physically interesting models exist for which the $A_{n}(y)$ and $B_{n}(y)$ are expressible as polynomials of order approximately n. Such models, which include spin- S Ising, Blume-Capel, ${ }^{(25)}$ Klauder, ${ }^{(26)}$ and double-Gaussian ${ }^{(23)}$ or range, ${ }^{(27)}$ are described in Section 3 and a few representative tables of coefficients of double power series in K and y are listed in the Appendix. Readers interested in other models should contact the authors.

With the much longer series now available one can reexamine the previous Ising model critical exponent estimates using a number of methods ranging from such commonly used approaches as the ratio and $D \log$ Padé to the more recently developed second-order differential approximants ${ }^{(28)}$ and (two-variable) partial differential approximants. ${ }^{(18,29)}$ Each method has its relative merits. For example, the conventional $D \log$ Padé is easy to
apply and directly separates the effects of unphysical singularities from the critical singularities of physical interest. Unfortunately, the method assumes the absence of correction-to-scaling terms discussed by Wegner, ${ }^{(30)}$ and this can lead to systematic errors in the leading critical exponent estimates. Exponents from $D \log$ Padé approximants ${ }^{(9)}$ to 21 -term spin- S Ising series are spin dependent and taken at face value suggest the absence of universality. On the other hand, the two-variable partial differential approximant method ${ }^{(13)}$ as applied to the double-Gaussian and Klauder series assumes the presence of a single correction-to-scaling term in the scaling form predicted by renormalization-group theory. ${ }^{(30)}$ Since this method uses all the information in each two-variable series simultaneously, it will probably yield the best possible exponent estimates if the renormalization-group hypothesis is correct and if higher-order corrections are sufficiently small. Of course, it is conceivable that the observed scatter in those estimates ${ }^{(13)}$ is a response to model-dependent exponents, and thus in a sense the method is not a test of universality. The partial differential approximant method of ref. 18 is based on the same scaling assumption, but uses more limited information, namely two single-variable series $\chi(K)$ and $\partial \chi(K) / \partial y$ for a given model parameter y. Exponent estimates have also been made ${ }^{(19)}$ using inhomogeneous first-order differential approximants and determining, self-consistently, a value y^{*} at which the leading nonanalytic corrections-to-scaling in χ vanish. Although not a test of universality, the resulting exponents have been used to check the validity of hyperscaling.

In the present paper we concentrate on analysis of the doubleGaussian series by single-variable confluent inhomogeneous second-order differential approximants. This simple generalization of the $D \log$ Pade method assumes that a single correction-to-scaling term is important. Also, as described in Section $4, \chi, M_{2}$, and the correlation length squared $\xi^{2} \propto M_{2} / \chi$ are assumed to have critical behavior

$$
F(K) \sim \begin{cases}A_{F}\left(1-\frac{K}{K_{c}}\right)^{-\gamma_{F}}\left[1+a_{F}\left(1-\frac{K}{K_{c}}\right)^{\theta_{F}}\right]+B_{F}, & K \approx K_{c} \tag{1.4}\\ C_{F}\left(1+\frac{K}{K_{c}}\right)^{1-a_{F}}+D_{F}, & K \approx-K_{c}\end{cases}
$$

in the neighborhood of the ferromagnetic and antiferromagnetic critical points $K= \pm K_{c}{ }^{6}{ }^{6}$

[^2]In principle one could determine without bias, other than the implicit function bias of a given method, estimates of K_{c}, γ_{F}, and θ_{F} for many different models and then reasonably decide whether universality is satisfied; i.e., whether the γ_{F} are model independent and the θ_{F} are both model and function independent. We find, not too surprisingly, ${ }^{(31)}$ that such double exponential fitting is very unstable and that even longer series will be needed before one can hope to succeed in verifying universality with this naive approach. Thus, instead, we have adopted the procedure of fixing θ_{F} at a few discrete values and determining only K_{c} and γ_{F}. We find that there is a "best" value for $\theta_{F}=\theta \approx 0.52 \pm 0.03$, for which the exponents γ_{F} are most constant over a wide range of y parameter values in the doubleGaussian model. In this limited sense we do verify universality and find $\gamma_{\chi} \equiv \gamma=1.237 \pm 0.002, \gamma_{\xi^{2}} \equiv 2 v=1.260 \pm 0.003$, and $\eta \equiv 2-\gamma / v=$ 0.0359 ± 0.0007. It is not clear how much function bias remains in these results. While slightly lower than some estimates, our present exponents are consistent, within error bounds, with other analyses of the doubleGaussian model; e.g., $\gamma=1.2385 \pm 0.0015$ from ref. $13, \gamma=1.237 \pm 0.003$ from ref. $14, \gamma=1.2378 \pm 0.0012$ from ref. 18 (we have doubled those authors' one-standard-deviation error estimates), and $\gamma=1.2395 \pm 0.0004$ from ref. 19. Similarly, our results for v are also consistent with other analyses; e.g., $v=0.632 \pm 0.001$ from ref. $13, v=0.630 \pm 0.003$ from ref. 14 , and $v=0.6312 \pm 0.0006$ from ref. 18. Our value $1-\alpha_{\chi}=0.89 \pm 0.02$ is consistent with the hyperscaling relation $3 v=2-\alpha$, but is too uncertain to be considered a significant test. By comparison, the inhomogeneous differential approximants of ref. 19 yield $1-\alpha_{x}=0.895 \pm 0.007$, for which the hyperscaling relation is satisfied to a precision of ± 0.01.

There is now little indication of an absence of universality or of a significant discrepancy between high-temperature series and field-theoretic results. Although earlier continuum ϕ^{4}-model estimates, ${ }^{(4)} \gamma=1.241 \pm 0.002$ and $\eta=0.031 \pm 0.004$, were only marginally in agreement with the lattice results, the latest estimates ${ }^{(4)}$ derived from ε-expansions and exact results, $\gamma=1.2390 \pm 0.0025$ and $\eta=2-\gamma / \nu=0.0365 \pm 0.003$, are now consistent, within error limits. Additional support for universality is provided by studies of leading amplitude ratios. ${ }^{(19)}$ Possible evidence for a lack of universality is that the correction-to-scaling amplitude ratio $a_{\xi^{2}} / a_{\chi}$ is weakly model dependent and near its maximum value $a_{\xi} / a_{\chi} \approx 1.7$ at the spin-1/2 Ising limit. This ratio is some 25% larger than the value of ≈ 1.3 estimated ${ }^{(32)}$ for the continuum model; however, given the latest continuum model results, the value 1.3 is now suspect. Both the large magnitude and model dependence of $a_{\xi^{2}} / a_{\chi}$ are consistent with those found by Nickel and Dixon ${ }^{(14)}$ based on Roskie's ${ }^{(12)}$ quadratic mapping. The
estimate $a_{\xi^{2}} / a_{\chi} \approx 1.42 \pm 0.14$, obtained by Zinn-Justin ${ }^{(10)}$ by a modified ratio method, is somewhat lower.

Overall, however, we believe that the analyses based on these new high-temperature series favor universality. The series are probably still too short to capture the true asymptotic behavior of the correction-to-scaling terms, especially since, as already mentioned, these cannot yet be predicted for the spin- $1 / 2$ Ising model treated in isolation. In view of this, we discuss in Section 5 considerations important for an extension of the present calculation to generate additional series terms.

2. SERIES GENERATION

The models considered in this paper are defined by the bcc family partition functions

$$
\begin{equation*}
Z=\prod_{i}\left[\int d \phi_{i} f\left(\phi_{i}^{2}\right) \exp \left(h_{i} \phi_{i}\right)\right] \exp \left(K \sum_{n n} \phi_{i} \phi_{j}\right) \tag{2.1}
\end{equation*}
$$

where the sites \mathbf{r}_{i} are either all even $(2 l, 2 m, \ldots)$ or all odd $(2 l+1,2 m+1, \ldots)$ integer translations from the origin. The interaction couples "nearest" neighbor scalar fields ϕ_{i}, ϕ_{j} on sites separated by $(\pm 1, \pm 1, \ldots, \pm 1)$. The 2-point correlation function in zero magnetic field h_{i} is

$$
\begin{equation*}
\left\langle\phi_{i} \phi_{j}\right\rangle=\left.\frac{\partial^{2}}{\partial h_{i} \partial h_{j}} \ln Z\right|_{\left\{h_{i}=0\right\}} \tag{2.2}
\end{equation*}
$$

and its Fourier transform is the propagator or \mathbf{q}-dependent susceptibility

$$
\begin{equation*}
G(\mathbf{q}, K)=\chi_{\mathbf{q}}=\sum_{j}\left\langle\phi_{i} \phi_{j}\right\rangle \exp \left[i \mathbf{q} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)\right] \tag{2.3}
\end{equation*}
$$

Of particular interest is the uniform susceptibility $\chi=\chi_{\mathbf{q}=0}$ and the second moment of the spin correlations

$$
\begin{equation*}
M_{2}=-\left.\frac{\partial^{2} \chi_{\mathbf{q}}}{\partial q_{x}^{2}}\right|_{\mathbf{q}=0}=\sum_{j}\left(x_{i}-x_{j}\right)^{2}\left\langle\phi_{i} \phi_{j}\right\rangle \tag{2.4}
\end{equation*}
$$

from which one can define the correlation length ξ via

$$
\begin{equation*}
\xi^{2}=M_{2} / 2 \chi \tag{2.5}
\end{equation*}
$$

Different models are distinguished by the single-site field distribution
function $f\left(\phi^{2}\right)$ or equivalently by its cumulant moments $\mu_{2 n}$, which are determined from the generating function,

$$
\begin{equation*}
\exp \left[\sum_{n} \frac{\mu_{2 n}}{(2 n)!} h^{2 n}\right]=\int d \phi f\left(\phi^{2}\right) e^{h \phi} \tag{2.6}
\end{equation*}
$$

A number of explicit choices for $f\left(\phi^{2}\right)$ are discussed in Section 3.
The coefficients of the expansion of $\chi_{\mathbf{q}}$ in powers of K can be represented as a graphical sum. Each graph consists of vertices (lattice sites) connected by bonds ["nearest" neighbor vectors ($\pm 1, \pm 1, \ldots, \pm 1$)], each of which is associated with a factor K. For the zero-magnetic-field expansion considered here, the number of bonds leaving each vertex, which is the order of the vertex, must be even. For this particular counting purpose an "external" bond is considered to be associated with each root vertex i and j in the average $\left\langle\phi_{i} \phi_{j}\right\rangle$ in (2.2). Also, for the free embedding scheme employed here, multiple bonds between pairs of vertices are allowed and distinct vertices in a graph are not restricted to correspond to distinct sites on the lattice. For a complete description of this scheme we refer the reader to the excellent article by Wortis. ${ }^{(33)}$

The numerical contribution of a particular graph is the product of a number of factors. Besides the factor K^{n} associated with the n internal bonds in the graph, a cumulant average $\mu_{2 m}$ is associated with each vertex of order $2 m$. Dividing these factors is the symmetry number of the graph, which is the number of distinct ways the internal bonds and vertices can be labeled and leave the graph topologically unchanged. Finally, one must multiply by the embedding constant, which is the total number of ways the vertices of the graph can be identified with lattice sites.

For example, the graphs shown in Figs. 1a and 1 b contribute to $\chi_{\mathbf{q}}$ the values

$$
\begin{align*}
& \chi_{[1 \mathrm{a}]}=K^{18} \mu_{2}^{6} \mu_{6}^{3} \mu_{8}\left(\frac{1}{3!5!}\right)\left(\frac{1}{2}\right) \sum_{\mathbf{r}_{2}, \ldots, \mathbf{r}_{10}} V_{13} V_{14} \cdots \exp \left[i \mathbf{q} \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)\right] \tag{2.7a}\\
& \chi_{[1 \mathrm{~b}]}=K^{18} \mu_{2}^{3} \mu_{4}^{5} \mu_{6}^{2}\left(\frac{1}{3!}\right)^{3}\left(\frac{1}{2}\right) \sum_{\mathbf{r}_{2}, \ldots, \mathbf{r}_{10}} V_{13} V_{37} \cdots \exp \left[i \mathbf{q} \cdot\left(\mathbf{r}_{1}-\mathbf{r}_{2}\right)\right] \tag{2.7~b}
\end{align*}
$$

where the $V_{i j}$ are the "nearest" neighbor interactions, that is, $V_{i j}=1$ if $\mathbf{r}_{i}-\mathbf{r}_{j}=(\pm 1, \ldots, \pm 1)$ and zero otherwise. The 3! and 5! in Eq. (2.7) correspond to the possible permutations of the multiple bonds. The factor $1 / 2$ in (2.7a) is the result of the vertex pair $7,8 \rightarrow 9,10$ relabeling symmetry, while in (2.7b) it is the $4 \rightarrow 6$ relabeling.

The presence of multiple bonds does not affect the lattice site sums, since $V_{i j}^{2}=V_{i j}$. Furthermore, since all site locations are unrestricted, site

(a)

(b)

Fig. 1. Two order- K^{18} contributions to χ. The open circles labeled 1 and 2 are the roots, each solid line is a "nearest" neighbor bond associated with a factor K, and the dashed lines are the fictitious external bonds. All vertices are necessarily of even valence; all loops are of even length.
sums can also be evaluated simply in Fourier space. Using the inverse transform $V_{i j}=\int d^{d} q V_{q} \exp \left[-i \mathbf{q} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)\right](2 \pi)^{d}$, where

$$
\begin{equation*}
V_{\mathrm{q}}=2^{d} \cos q_{x} \cos q_{y} \cdots \tag{2.8}
\end{equation*}
$$

is the Fourier transform of the "nearest" neighbor interaction $V_{i j}$, we obtain for the sums in both (2.7a) and (2.7b) the same threc-loop integral

$$
\begin{align*}
\sum_{\mathbf{r}_{2}, \ldots, \mathrm{r}_{10}}(\cdots)= & V_{\mathrm{q}} \int \frac{d^{d} q_{1}}{(2 \pi)^{d}} \int \frac{d^{d} q_{2}}{(2 \pi)^{d}} V_{\mathbf{q}_{1}}^{3} V_{\mathbf{q}_{2}}^{3} V_{\mathbf{q}_{1}-\mathbf{q}_{2}+\mathbf{q}} \\
& \times \int \frac{d^{d} q_{3}}{(2 \pi)^{d}} V_{\mathbf{q}_{3}}^{4} \tag{2.9}
\end{align*}
$$

The form for V_{q} in Eq. (2.8) is special to the bcc family; because of its factorizability, the expression (2.9) can be rewritten as a product $\prod_{\alpha} E_{q_{x}}$ of d one-dimensional embedding constants, of the form

$$
\begin{align*}
E_{q_{\alpha}}= & 2 \cos q_{\alpha} \int_{0}^{2 \pi} \frac{d q_{1}}{2 \pi} \int_{0}^{2 \pi} \frac{d q_{2}}{2 \pi}\left(2 \cos q_{1}\right)^{3}\left(2 \cos q_{2}\right)^{3} \\
& \times 2 \cos \left(q_{1}-q_{2}+q_{\alpha}\right) \int_{0}^{2 \pi} \frac{d q_{3}}{2 \pi}\left(2 \cos q_{3}\right)^{4} \\
= & 108+108 \cos 2 q_{\alpha} \tag{2.10}
\end{align*}
$$

where q_{x} is one of the components of \mathbf{q}. The evaluation of such one-dimensional embedding constants is usually most easily carried out in position space, but in any case is no longer the most time-consuming part of the graph calculation. This is the crucial feature that has made the present order- K^{21} calculation possible.

Quite generally, the contribution of a particular graph to χ_{q} is of the two possible forms

$$
\chi_{[g]}=\frac{1}{n!} K^{n} \prod_{m}\left(\mu_{2 m}\right)^{c_{m}} \prod_{\alpha}\left(\sum_{k} e_{k}\left\{\begin{array}{c}
\cos 2 k q_{\alpha} \tag{2.11}\\
\cos (2 k+1) q_{\alpha}
\end{array}\right\}\right) w
$$

A complete description of this contribution is contained in the two linear and integer arrays c_{m} and e_{k} and the weight w, which, because of the factor $n!$, is also an integer. Graphs which are described by the same characteristic arrays c_{m} and e_{k} can be combined by adding together their respective weights w. This leads to a very considerable reduction of the number of tabular entries. Further reduction is possible if we specialize to the uniform susceptibility or the second moment; the array e_{k} can then be combined into the single number E_{g} as in (1.1) or the pair E_{g} and F_{g} as in (1.2). This reduction in storage requirements is the second most important feature that has made possible the present calculation.

In the remainder of this section we will describe a few technical details of the graph generation program. We have used the 2-point renormalization scheme as outlined by Wortis, ${ }^{(33)}$ with one basic difference: that we never explicitly specify the field distribution function $f\left(\phi^{2}\right)$ and hence the moments $\left\{\mu_{2 m}\right\}$. Instead, the equivalent information is always stored in arrays like c_{m} in (2.11) which specify the number of vertices of various orders.

The program divides roughly into five parts. First, a table of elementary 2 -rooted, 2 -irreducible graphs is generated. Second, the bonds in these graphs are replaced in all possible ways by 2 -rooted, 1 -irreducible segments to produce a table of elementary 2 -rooted, 1 -irreducible contributions. Third, another program segment generates 2 -rooted nodal and ladder contributions which, when combined with the elementary contributions, yields a table of all 2 -rooted, 1 -irreducible contributions. Fourth, the two roots are collapsed to a single root to generate vertex insertions. These are selfconsistently iterated to generate a complete table of 1 -rooted contributions with bare vertices. Fifth, the 1 -root contributions are used as replacements for the vertices in the 2 -rooted, 1 -irreducible table to generate all 2 -rooted contributions with bare vertices. These last two tables constitute the information from which χ and M_{2} can be obtained via (1.1) and (1.2).

The description of the entire program would be too long and not particularly instructive. Instead, we outline below the third segment to give a flavor of the data-handling techniques we have employed. Some additional remarks may be found in Section 5, where we discuss the prospects for a higher-order calculation.

Assume that a table of low-order elementary, nodal, and ladder con-
tributions exists. A particular entry contains the following information elements: (1) order n; (2) type: elementary, nodal, or ladder; (3) whether the embedding constant array represents an expansion in $\cos 2 k q$ or $\cos (2 k+1) q$ [cf. Eq. (2.11)]; (4) whether the roots are of odd order or even order; (5) orders v_{L} and v_{R} of the two roots; (6) array in which element c_{m} is the number of vertices exclusive of the roots of order $2 m$; (7) number of elements in embedding constant array $e_{k} ;(8)$ greatest common factor f of the array elements e_{k}; and (9) pointer to another table giving location of the reduced array e_{k} / f. For ladder entries the following additional information is stored: (10) pointer to the same table giving location of the most recently added rung; and (11) the number of times l this particular rung is present in the ladder. The final piece of information is the weight w, which, because it is an integer of order $n!$, is stored in four 32 -bit words as an IBM quadruple-precision real. All the remaining information is packed into additional sets of four 32 -bit words.

This packing onto a fixed length of 32 bytes/entry considerably simplifies the data handling. The variable-length entries are restricted entirely to the table of reduced embedding constant arrays e_{k} / f, but it is a relatively short table and its handling is not a problem. Note also that packing leads in some cases to greater efficiency in the use of the data. For example, the entire array c_{m} fits in a single 32 -bit word and the addition of two arrays c_{m} and c_{m}^{\prime} becomes the addition of two single words. Since addition is the only operation performed on the c_{m} arrays in this particular program segment, those arrays need never be unpacked.

The rules for generating a new graph C from two graphs A and B are simple. A ladder C can be generated from all possible A and B that have the same information element 3 , except that, to avoid overcounting, both may not simultaneously be ladders themselves. Also, again to avoid overcounting, the rungs are added in a particular order; if B is considered as the new rung to be added to A, it may not come from any table location beyond that of the previously added rung (see information element 10). If it comes from the same location, l is incremented by unity; otherwise, l is set equal unity (see information element 11). Then

$$
\begin{aligned}
n(C) & =n(A)+n(B) \\
v_{L, R}(C) & =v_{L, R}(A)+v_{L, R}(B) \\
c_{m}(C) & =c_{m}(A)+c_{m}(B) \\
e_{k}(C) & =e_{k}(A) \cdot e_{k}(B) \\
w(C) & =\binom{n(C)}{n(A)} w(A) w(B) / l
\end{aligned}
$$

The binomial coefficient in the expression for the new weight arises because of our decision to include a factor of n ! in (2.11); dividing the weight by l generates the correct l ! symmetry factor associated with l identical rungs in the ladder. Similarly, a nodal contribution C can be generated from all A and B that have the same information element 4 , except that both may not be nodal. Now

$$
\begin{aligned}
n(C) & =n(A)+n(B), \quad v_{L}(C)=v_{L}(A), \quad v_{R}(C)=v_{R}(B) \\
c_{m}(C) & =c_{m}(A)+c_{m}(B)+\delta_{2 m, v_{R}(A)+v_{L}(B)} \\
w(C) & =\binom{n(C)}{n(A)} w(A) w(B)
\end{aligned}
$$

The new embedding constant $e_{k}(C)$ is a convolution of the two arrays, $e_{k}(A)$ and $e_{k}(B)$; that is, the new array in Fourier space representation is a simple product of the old arrays.

As new contributions are generated, a search is initiated through the embedding constant array table for the reduced array e_{k} / f. If such an entry is found, the pointer to this old entry is recorded as information element 9; otherwise, a new entry is made and a new pointer is generated first. A search based on the B-tree algorithm described by Knuth ${ }^{(34)}$ is then initiated through the table of ladder or nodal graphs. If an entry is found whose four 32-bit word descriptor is identical to the descriptor of the new contribution, the new weight w is added to the already stored weight. Otherwise, a new entry is established. Note that what is stored in this 2-rooted, 1-irreducible table of elementary, ladder, and nodal contributions is not necessarily individual graphs, but, rather, sums of graphs whose description elements $1-11$ given above are the same. Even with this very significant packing, the cumulative number of entries in the table through order K^{21} is nearly $3,000,000$ and requires three 40 -megabyte tapes for storage.

We conclude by reviewing the most important features of the present calculation. First, it is not important that free embedding counts are larger than the counts in either the weak or the strong embedding scheme. What is crucial, and yet was not recognized in the Wortis article, ${ }^{(33)}$ is that for the bcc family of lattices the free embedding count factorizes and each graph embedding constant reduces to a one-dimensional calculation. Also, each graph that contributes in dimension $d=3$, say, also contributes in any other dimension d. Thus, the known $d=1$ and $d=2$ results serve as complete sum rule checks not available in the weak and strong embedding schemes. Second, although renormalization in the free embedding scheme replaces graphical complexity by algebraic complexity, it was recognized by

Wortis and co-workers ${ }^{(33,35)}$ that a significant advantage can still be gained by renormalization. That is, if the complete description of a graph as contained, say, in the adjacency matrix ${ }^{(33)}$ is replaced by the limited algebraic information as given in 1-11 above, then many graphs may combine into a single algebraic entry. Savings in both handling time and storage increase dramatically with the order of the calculation.

At the 1 -point and 2-point renormalization level used here, only elementary 2-rooted, 2-irreducible graphs need be generated and stored as graphs. For orders $7,9,11,13,15,17,19$, and 21 the cumulative total number of elementary graphs required is approximately $1,1,6,26,145$, 917,6931 , and 60,237 . Extrapolation suggests that about 7×10^{6} graphs would be required for an order- K^{25} calculation: such a list is quite manageable in terms of storage requirements. However, to generate this list is nontrivial by present techniques and will be discussed briefly in Section 5. We now believe this is a more fundamental barrier to any extension of the series for χ and M_{2} than the problem of sorting and storing the 1 -irreducible contributions as stated at Cargese. ${ }^{(9)}$

3. MODELS

The models discussed in this paper are distinguished by the scalar-field distribution function $f\left(\phi^{2}\right)$ in (2.1). In all our work below we choose the width of this distribution so that the second (cumulant) moment is unity; i.e.,

$$
\begin{equation*}
\mu_{2}=\int d \phi \phi^{2} f\left(\phi^{2}\right) / \int d \phi f\left(\phi^{2}\right)=1 \tag{3.1}
\end{equation*}
$$

With this normalization our definitions of certain models differ from the conventional ones by a rescaling of the inverse temperature parameter K.

3.1. Spin-S Ising Model

Of the many possible simple scalar models, probably the best known is the spin- S Ising model in which 3-dimensional quantum spins interact via the anisotropic coupling $J S_{i}^{z} S_{j}^{z}$. This model is equivalent to the scalar model (2.1) with the choice

$$
\begin{equation*}
f\left(\phi^{2}\right)=\sum_{m=-s}^{S} \delta(\phi+2 m \sqrt{y}), \quad y=\frac{3}{4 S(S+1)} \tag{3.2}
\end{equation*}
$$

From the logarithmic derivative of the generating function (2.6) we easily derive

$$
\begin{equation*}
\mu_{2 n}=\frac{d^{2 n-1}}{d h^{2 n-1}}[(2 S+1) \sqrt{y} \operatorname{coth}[(2 S+1) \sqrt{y} h]-\sqrt{y} \operatorname{coth} \sqrt{y} h]_{h=0} \tag{3.3}
\end{equation*}
$$

which, by use of $(2 S+1)^{2}=1+3 / y$ and the known expansion for $\operatorname{coth} x$, we can also rewrite entirely in terms of the parameter y as

$$
\begin{equation*}
\mu_{2 n}=\left[(3+y)^{n}-y^{n}\right] \frac{4^{n} B_{2 n}}{2 n} \tag{3.4}
\end{equation*}
$$

where the $B_{2 n}$ are the Bernoulli numbers. Because of the particular polynomial form of the moments in (3.4), the expressions (1.1) and (1.2) for χ and M_{2} reduce to the double power series of essentially triangular form

$$
\begin{align*}
\chi(K, y) & =A_{0}^{0}+\sum_{n=1} K^{n} \sum_{m=1}^{n} \frac{A_{n}^{m}}{m!} y^{m-1} \\
M_{2}(K, y) & =\sum_{n=1} K^{n} \sum_{m=1}^{n} \frac{B_{n}^{m}}{m!} y^{m-1} \tag{3.5}
\end{align*}
$$

Because the coefficients A_{n}^{m} and B_{n}^{m} for the spin- S models are not integers (though they could be expressed as rational fractions), they will not be presented here. Readers interested in these tables should consult the authors. However, the single variable series for $S=1 / 2,1,2$, and ∞ in dimensions 2 and 3 are given in the Appendix (Table I).

3.2. Blume-Capel Model

Another simple model that has been discussed in the literature and is useful for the study of tricritical behavior in addition to ordinary critical behavior is the Blume-Capel, or 3 -state, model. ${ }^{(25)}$ The distribution function with our normalization (3.1) is

$$
\begin{equation*}
f\left(\phi^{2}\right)=\delta(\phi+\sqrt{y})+2(y-1) \delta(\phi)+\delta(\phi-\sqrt{y}) \tag{3.6}
\end{equation*}
$$

and its cumulant moments are given by

$$
\begin{equation*}
\mu_{2 n}=\frac{d^{2 n-1}}{d h^{2 n-1}}\left[\frac{\sqrt{y} \sinh \sqrt{y} h}{y-1+\cosh \sqrt{y} h}\right]_{h=0} \tag{3.7}
\end{equation*}
$$

Explicit power series division in (3.7) shows that the $\mu_{2 n}$ for $n>1$ can be generated recursively from the relation

$$
\begin{equation*}
\mu_{2 n}=y^{n-1}-\sum_{m=1}^{n-1} y^{n-1-m}\binom{2 n-1}{2 m-1} \mu_{2 m} \tag{3.8}
\end{equation*}
$$

Because the $\mu_{2 n}$ in (3.8) are of the same polynomial form as in (3.4), the Blume-Capel χ and M_{2} series are also expressible in the triangular form (3.5). The coefficients A_{n}^{m} and B_{n}^{m} for this model in both $d=2$ and $d=3$ are listed in the Appendix (Table II). Except for the $A_{0}^{0}=1$ entry in the tables for χ, m varies from 1 to n for fixed n in each block of n values. Two checks are possible in that $y=1$ is the $S=1 / 2$ model, $y=3 / 2$ is $S=1$. The value $y=2$ yields the $l=2$ "loop model" mentioned most recently by ZinnJustin. ${ }^{(7)}$ In the neighborhood of some critical value $K=K_{t}(y), y=y_{i}>2$, the model is expected to display tricritical behavior. In the future one might attempt both to locate this point and deduce the expected logarithmic corrections that modify the classical (mean field) behavior in $d=3$. However for the present we believe it is more useful to deal with simpler models in which the mean-field point is purely Gaussian and its location is exactly known.

3.3. Ising-Gaussian Interpolation Models

One simple model that can interpolate between $S=1 / 2$ Ising and Gaussian behavior is a model of classical, fixed-length, y-dimensional spins, again coupled anisotropically via $J S_{i}^{z} S_{j}^{z}$. In this case the equivalent scalar distribution is

$$
f\left(\phi^{2}\right)= \begin{cases}\left(y-\phi^{2}\right)^{(y-3) / 2}, & |\phi|<\sqrt{y} \tag{3.9}\\ 0, & |\phi|>\sqrt{y}\end{cases}
$$

which in the limit $y \rightarrow 1$ becomes the $S=1 / 2$ Ising distribution and in the limit $y \rightarrow \infty$ becomes the Gaussian $f \propto \exp \left(-\phi^{2} / 2\right)$. In the interval $1<y<\infty$, the model passes through the $S=\infty$ Ising point at $y=3$. However, the power moments of the distribution, $m_{2 n} \equiv \int f\left(\phi^{2}\right) \phi^{2 n} d \phi$, which can be determined recursively from

$$
\begin{equation*}
m_{2 n+2}=\frac{y(2 n+1)}{y+2 n} m_{2 n} \tag{3.10}
\end{equation*}
$$

are not polynomials in y and thus a simple triangular expansion as in (3.5) is not possible. Similarly, the ϕ^{4} model $^{(1)}$ defined by $f\left(\phi^{2}\right) \propto$ $\exp \left[\alpha \phi^{2}-\beta(\alpha) \phi^{4}\right], \beta(\alpha)>0$, does not have a triangular expansion.

We have not bothered to tabulate single variable series for these models, but have instead concentrated on two other models which do have triangular expansions similar to (3.5). These models, the Klauder ${ }^{(26)}$ and double-Gaussian, ${ }^{(23)}$ or range, ${ }^{(27)}$ also allow interpolation between $S=1 / 2$ Ising and Gaussian. A possible limitation is that they are not defined for temperatures below some critical value, i.e., $K>K^{*}(y)$. However, as this temperature is below the interesting second-order phase transition line $K=K_{c}(y)$, we feel they are useful nonetheless and hope that our work will trigger further investigations into their properties.

3.4. Klauder Model

The Klauder model ${ }^{(26)}$ is defined by the distribution

$$
\begin{equation*}
f\left(\phi^{2}\right)=|\phi|^{y /(1-y)} e^{-\phi^{2} / 2(1-y)} \tag{3.11}
\end{equation*}
$$

provided that

$$
\begin{equation*}
K<K^{*}(y)=\frac{1}{2^{d}(1-y)} \tag{3.12}
\end{equation*}
$$

On the interval $0 \leqslant y \leqslant 1$ the model interpolates between Gaussian and $S=1 / 2$ Ising. Since the moments satisfy the recursion relations

$$
\begin{equation*}
m_{2 n+2}=(2 n+1-2 n y) m_{2 n} \tag{3.13}
\end{equation*}
$$

the cumulant moments $\mu_{2 n}$ are again polynomials of order $n-1$ as in (3.4). It is, however, convenient to rewrite the expansion for χ and M_{2} for the model as

$$
\begin{align*}
\chi(K, y) & =A_{0}^{0}+\sum_{n=1} \frac{2^{n}}{n!} K^{n} \sum_{m=1}^{n} A_{n}^{m} y^{m-1} \tag{3.14}\\
M_{2}(K, y) & =\sum_{n=1} \frac{2^{n}}{n!} K^{n} \sum_{m=1}^{n} B_{n}^{m} y^{m-1}
\end{align*}
$$

For $d=3$ the coefficients A_{n}^{m} and B_{n}^{m} are integers and are listed in Table III of the Appendix with precisely the same ordering as used for the Blume-Capel model series.

Some properties of the Klauder model in the vicinity of the Gaussian line $y=0$ can be determined fairly directly, as we illustrate below specifically for $d=3$. Note that at $y=0$ all $\mu_{2 n}$ for $n>1$ vanish and the propagator (2.3) is given by the free-field expression

$$
\begin{equation*}
G_{0}(\mathbf{q}, K)=\left(1-8 K \cos q_{x} \cos q_{y} \cos q_{z}\right)^{-1} \tag{3.15}
\end{equation*}
$$

Corrections to this result can be derived systematically if we treat y as a small parameter. To obtain a complete description near the critical point the full machinery of renormalized perturbation theory should be used, but here we will only evaluate the leading y dependence of the critical line $K_{c}(y)$, for which lowest order elementary perturbation theory is adequate. For small y the cumulant moments are given by

$$
\begin{equation*}
\mu_{2 n+2} \approx(-2)^{n} n!y, \quad n \geqslant 0 \tag{3.16}
\end{equation*}
$$

Then the propagator to leading order in y is modified by a self-energy which is a sum of terms, each corresponding to a single vertex insert of order greater than two. Attached to the vertex of order $2 n+2$ are n closed loops with symmetry factor $2^{n} n$!. Each loop contributes a factor given by the momentum integral

$$
\begin{equation*}
I(K)=\int \frac{d^{3} q}{(2 \pi)^{3}}\left[G_{0}(\mathbf{q}, K)-1\right] \tag{3.17}
\end{equation*}
$$

and so the complete self-energy contribution is

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{\mu_{2 n+2}}{2^{n} n!}[I(K)]^{n}=-\frac{y I(K)}{1+I(K)} \tag{3.18}
\end{equation*}
$$

The susceptibility is

$$
\begin{equation*}
G(\mathbf{q}, K) \approx\left(1-8 K \cos q_{x} \cos q_{y} \cos q_{z}+\frac{y I(K)}{1+I(K)}\right)^{-1} \tag{3.19}
\end{equation*}
$$

and the critical $K_{c}(y)$ is determined by the divergence of $G(0, K)$. To leading order in y,

$$
\begin{equation*}
8 K_{c}(y) \approx 1+\frac{y I(1 / 8)}{1+I(1 / 8)} \tag{3.20}
\end{equation*}
$$

Numerically, $I(1 / 8)=\left(4 / \pi^{2}\right) K^{2}(1 / 2)-1 \approx 0.3982 \ldots$, where here $K(m)$ is the complete elliptic integral. ${ }^{(36)}$ Note that the instability line as given by (3.12) is, to leading order in y,

$$
\begin{equation*}
8 K^{*}(y) \approx 1+y \tag{3.21}
\end{equation*}
$$

and thus for $y>0, K_{c}<K^{*}$. For $y<0, K_{c}>K^{*}$ and Ising-like critical behavior cannot be observed in this regime. It is for this reason that we believe the model is not useful for the purpose originally envisioned by Klauder. ${ }^{(26)}$

3.5. Double-Gaussian Model

The second very useful model with a triangular expansion is the double-Gaussian model defined by

$$
\begin{equation*}
f\left(\phi^{2}\right)=\exp \left[-\frac{(\phi+\sqrt{y})^{2}}{2(1-y)}\right]+\exp \left[-\frac{(\phi-\sqrt{y})^{2}}{2(1-y)}\right] \tag{3.22}
\end{equation*}
$$

provided the restriction (3.12) is again fulfilled. Also, ${ }^{7}$ just as for the Klauder model, this model interpolates between Gaussian and $S=1 / 2$ Ising as y varies between 0 and 1 . However, somewhat surprisingly, this model has an analytic continuation to the regime $y>1$, which can be interpreted physically and which we call the range model. The cumulant moments for the double-Gaussian model are simply related to the $S=1 / 2$ Ising moments $\mu_{2 n}^{(I)}=\left(4^{n}-1\right) 4^{n} B_{2 n} /(2 n)$, given in (3.4),

$$
\mu_{2 n}= \begin{cases}\mu_{2}^{(n)}=1, & n=1 \tag{3.23}\\ y^{n} \mu_{2 n}^{(I)}, & n>1\end{cases}
$$

and the expressions (1.1) and (1.2) for χ and M_{2} can therefore be written

$$
\begin{align*}
\chi(K, y) & =A_{0}^{0}+\sum_{n=1} K^{n}\left(A_{n}^{0}+\sum_{m=1}^{n} \frac{A_{n}^{m}}{m!} y^{m+1}\right) \tag{3.24}\\
M_{2}(K, y) & =\sum_{n=1} K^{n}\left(B_{n}^{0}+\sum_{m=1}^{n} \frac{B_{n}^{m}}{m!} y^{m+1}\right)
\end{align*}
$$

The integer coefficients A_{n}^{m} and B_{n}^{m} are listed in Table IV of the Appendix for $d=3$. Within each block of $n+1$ entries, m varies from 0 to n. Note that a 3 -way sum rule check is possible between Blume-Capel, Klauder, and double-Gaussian tables by setting $y=1$.

An analysis similar to that described for the Klauder model can be used to determine the leading behavior of the critical line $K_{c}(y)$. In this case, (3.23) shows directly that the leading self-energy corrections involve only the fourth-order vertex insert at order y^{2} and the sixth-order vertex insert at order y^{3}. We find

$$
\begin{equation*}
G(\mathbf{q}, K) \approx\left\{1-8 K \cos q_{x} \cos q_{y} \cos q_{z}+y^{2} I(K)-2 y^{3}[I(K)]^{2}\right\}^{-1} \tag{3.25}
\end{equation*}
$$

[^3]which diverges at $\mathbf{q}=0$ when $K=K_{c}(y)$, where
\[

$$
\begin{equation*}
8 K_{c}(y) \approx 1+y^{2} I\left(\frac{1}{8}\right)-2 y^{3}\left[I\left(\frac{1}{8}\right)\right]^{2} \tag{3.26}
\end{equation*}
$$

\]

Again, for $y>0, K_{c}<K^{*}$, and so it is consistent to identify $K_{c}(y)$ as the critical line.

3.6. Range Model

As observed by Baker and Bishop, ${ }^{(27)}$ the partition function (2.1) in uniform magnetic field $h_{i}=h$ with the double-Gaussian distribution (3.22) can be written in the Ising-like form of a sum over discrete "spin" values:

$$
\begin{align*}
& Z_{\mathrm{DG}}(K, y, h) \\
& \quad=\sum_{\left\{s_{i}= \pm 1\right\}} \prod_{i} \int d \phi_{i} \exp \left\{K \sum_{n n} \phi_{i} \phi_{j}-\sum_{i} \frac{\left(\phi_{i}-s_{i} \sqrt{y}\right)^{2}}{2(1-y)}+h \sum_{i} \phi_{i}\right\} \tag{3.27}
\end{align*}
$$

or

$$
\begin{align*}
& Z_{\mathrm{DG}}(K, y, h) \\
& \quad=Z_{1}(y) \sum_{\left\{s_{i}= \pm 1\right\}} \prod_{i} \int d \phi_{i} \exp \left\{-\frac{1}{2} \sum_{i j} \phi_{i} M_{i j} \phi_{j}\right. \\
& \left.\quad+\sum_{i} \phi_{i}\left(h+\frac{s_{i} \sqrt{y}}{1-y}\right)\right\} \tag{3.28}
\end{align*}
$$

where

$$
\begin{equation*}
M_{i j}=\int \frac{d^{d} q}{(2 \pi)^{d}} M_{\mathbf{q}} \exp \left[i \mathbf{q} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)\right], \quad M_{\mathbf{q}}=\frac{1}{1-y}-K V_{\mathbf{q}} \tag{3.29}
\end{equation*}
$$

with V_{q} the "nearest" neighbor interaction (2.8). The prefactor $Z_{1}(y)$ in (3.28) does not depend on the field h and hence will not enter into the calculation of the susceptibility to be discussed below. The integration over the Gaussian field variables ϕ_{i} is accomplished by first shifting ϕ_{i} to $\phi_{i}+\sum_{j} M_{i j}^{-1}\left[h+s_{j} y^{1 / 2} /(1-y)\right]$, where the inverse matrix $M_{i j}^{-1}$ is

$$
\begin{align*}
M_{i j}^{-1}= & \int \frac{d^{d} q}{(2 \pi)^{d}} M_{\mathbf{q}}^{-1}\left\{\exp \left[i \mathbf{q} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)\right]\right\} \\
= & (1-y) \delta_{i j}+K(1-y)^{2} \\
& \times \int \frac{d^{d} q}{(2 \pi)^{d}} \frac{V_{\mathbf{q}}}{1-K(1-y) V_{\mathbf{q}}} \exp \left[i \mathbf{q} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)\right] \tag{3.30}
\end{align*}
$$

We obtain

$$
\begin{align*}
Z_{\mathrm{DG}}(K, y, h)= & Z_{2} \sum_{\left\{s_{i}= \pm 1\right\}} \exp \left\{\frac{1}{2} \sum_{i j}\left(h+\frac{s_{i} \sqrt{y}}{1-y}\right)\right. \\
& \left.\times M_{i j}^{-1}\left(h+\frac{s_{i} \sqrt{y}}{1-y}\right)\right\} \tag{3.31}
\end{align*}
$$

and the argument of the exponential in (3.31) can be simplified, with the use of the result $\sum_{j} M_{i j}^{-1}=(1-y) /\left[1-2^{d} K(1-y)\right]$, to

$$
\begin{align*}
& \left\{\frac{y}{2(1-y)^{2}} \sum_{i j} s_{i} M_{i j}^{-1} s_{j}+h \sqrt{y} \sum_{i} \frac{s_{i}}{1-2^{d} K(1-y)}\right. \\
& \left.\quad+\frac{1}{2} \frac{N h^{2}(1-y)}{1+2^{d} K(1-y)}\right\} \tag{3.32}
\end{align*}
$$

where N is the number of sites in the lattice. Note also that the diagonal term $(1-y) \delta_{i j}$ in (3.30) will contribute a constant to the quadratic $s_{i} M_{i j}^{-1} s_{j}$, which can be absorbed into the prefactor in (3.31) and change it to $Z_{3}(K, y)$.

Let us now define an $S=1 / 2$ Ising model with the "long"-range interaction $K^{\prime} J_{i j}(\rho)$, where

$$
\begin{equation*}
J_{i j}(\rho)=\int \frac{d^{d} q}{(2 \pi)^{d}} \frac{V_{\mathbf{q}}}{1-\rho V_{\mathbf{q}}} \exp \left[i \mathbf{q} \cdot\left(\mathbf{r}_{i}-\mathbf{r}_{j}\right)\right] \tag{3.33}
\end{equation*}
$$

Provided $|\rho|<2^{-d}$, the interactions are exponentially damped with distance; in the coordinate direction x, say, $J_{i j} \sim e^{-x_{i j} / \lambda}$, where the range λ is the solution of $\cosh (1 / \lambda)=2^{-d} /|\rho|$. For $K^{\prime}>0$, which we consider here, the "nearest" neighbor interaction is always ferromagnetic, as indeed are all interactions between a spin at the origin and a spin on the odd lattice sites $(2 l+1,2 m+1, \ldots)$. However, the interactions between spins at the origin and even lattice sites $(2 l, 2 m, \ldots)$ are only ferromagnetic for $\rho>0$; for $\rho<0$ these interactions inhibit ferromagnetic ordering. But since the total interaction $\sum_{j} J_{i j}=2^{d} /\left(1-2^{d} \rho\right)$ is always ferromagnetic, the model is only an example of a partially frustrated ferromagnet in the regime $\rho<0$. The partition function for this model, which we call the range model, is defined as

$$
\begin{equation*}
Z_{\mathbf{R}}\left(K^{\prime}, \rho, h^{\prime}\right)=\sum_{\left\{s_{i}= \pm 1\right\}} \exp \left\{\frac{1}{2} K^{\prime} \sum_{i j} s_{i} J_{i j}(\rho) s_{j}+h^{\prime} \sum_{i} s_{i}\right\} \tag{3.34}
\end{equation*}
$$

and on comparing (3.34) with (3.31) and (3.32) we find

$$
\begin{align*}
\ln Z_{\mathrm{DG}}(K, y, h)= & \ln Z_{\mathbf{R}}\left(K y, K(1-y), \sqrt{y} h /\left[1-2^{d} K(1-y)\right]\right) \\
& +\frac{1}{2} N h^{2}(1-y) /\left[1-2^{d} K(1-y)\right]+\ln Z_{3}(K, y) \tag{3.35}
\end{align*}
$$

That is, except for some trivial additive functions, the double-Gaussian and range model free energies are equal, provided we make the parameter identifications

$$
\begin{equation*}
K^{\prime}=K y, \quad \rho=K(1-y), \quad h^{\prime}=\frac{\sqrt{y} h}{1-2^{d} K(1-y)} \tag{3.36}
\end{equation*}
$$

By differentiating (3.35) twice with respect to field, we find

$$
\begin{equation*}
\chi_{\mathrm{DG}}=\frac{y}{\left[1-2^{d} K(1-y)\right]^{2}} \chi_{\mathrm{R}}+\frac{1-y}{1-2^{d} K(1-y)} \tag{3.37}
\end{equation*}
$$

which implies that χ_{R} has the expansion

$$
\begin{equation*}
\chi_{\mathbf{R}}(K, y)=1+\sum_{n=1} K^{n} \sum_{m=1}^{n} \frac{R_{n}^{m}}{m!} y^{m} \tag{3.38}
\end{equation*}
$$

The coefficients R_{n}^{m} are given in terms of the coefficients A_{n}^{m} of the doubleGaussian expansion (3.24) by

$$
\begin{align*}
R_{n}^{m}= & 2^{d n} \delta_{m 1}+A_{n}^{m}-2^{d+1}\left(A_{n-1}^{m}-m A_{n-1}^{m-1}\right) \\
& +2^{2 d}\left[A_{n-2}^{m}-2 m A_{n-2}^{m-1}+m(m-1) A_{n-2}^{m-2}\right] \tag{3.39}
\end{align*}
$$

with the proviso that the A_{l}^{k} on the right-hand side are set to zero whenever $l<1$ or $k<1$ or $k>l$.

As stressed above, the range model analytically continues the doubleGaussian model to the region $y>1$ provided that $(y-1) K<2^{-d}$. No analysis of the series (3.38) have been performed to date, but an estimate of the critical line $K_{c}(y)$ has been obtained for $d=3$ by a crude leastsquares fit to double-Gaussian model approximants in the range $0.5<y \leqslant 1$. Our approximation is
$K_{c}^{-1}(y) \approx 8-3.05602 y^{2}+2.96137 y^{3}-2.5771 y^{4}+1.274 y^{5}-0.248 y^{6}$
The coefficients of y^{2} and y^{3} were not fixed in the fit and yet are within 4% and 14%, respectively of the exact values given in (3.26). The estimate (3.40) intersects the model boundary $K^{-1}=8(y-1)$ at $y \approx 1.6$, and thus critical behavior over the wide range $1<y \leqslant 1.6$ remains to be explored by single-variable series analysis. On the other hand, since Chen et al. ${ }^{(13)}$ could clearly identify only a single Ising-like multicritical point in the range $0<y<1.8$ for the double-Gaussian model, universality of critical exponents is to be expected.

4. DOUBLE-GAUSSIAN SERIES ANALYSIS

The analysis described in this section is based on the method of confluent inhomogeneous second-order differential equations discussed by Rehr et al. ${ }^{(28)}$ Its utility lies in the fact that it may lead to a significant test of the universality hypothesis. As discussed in Sec. 1, the method biases the unknown functions of interest to have the appropriate leading critical behavior (1.4) which, although not of the scaling form discussed by Wegner, ${ }^{(30)}$ should be adequate, provided higher order terms in $\left(K_{c}-K\right)^{n \theta}$ and other corrections proportional to $\left(K_{c}-K\right)^{\theta_{n}}, \theta_{n}>\theta$, are small or can be incorporated into the analytical factors $A_{F}(K)$ and $a_{F}(K)$ or an "effective" background $B_{F}(K)$.

We have analyzed in detail the three-dimensional double-Gaussian model discussed in Sec. 3, which we believe is typical of models that interpolate between spin- $1 / 2$ Ising and Gaussian limits. Of course, we investigate the model only at a discrete set of parameter values. These are chosen so that the width of each Gaussian in the distribution (3.22) is an integer multiple of 0.05 , i.e.,

$$
\begin{equation*}
\omega \equiv \sqrt{1-y}=0.05 n \tag{4.1}
\end{equation*}
$$

We could only successfully determine approximants with the critical behavior (1.4) in the range $0 \leqslant \omega \leqslant 0.70$; presumably for larger ω the higher order terms $\left(K_{c}-K\right)^{n \theta}$ or other confluent corrections are so large that the fact that (1.4) is not of scaling form is significant. If $\theta=0.5$ exactly, (1.4) would in principle contain such terms. Also, because the double exponential fitting problem is so unstable, we limited ourselves to the biased problem in which $\theta_{F}=\theta$ is fixed in (1.4). If a common θ can be found for which the γ_{F} are independent of ω, then, in a limited sense, we will have verified one aspect of universality.

The approximations to χ, M_{2}, and $\xi^{2} \propto M_{2} / \chi$ which have the confluent asymptotic critical behavior (1.4) are determined as the solutions of the second-order differential equation

$$
\begin{equation*}
\left[Q_{2}(K) D_{2}+Q_{1}(K) D_{1}+Q_{0}(K)\right] F(K)=P(K) \tag{4.2}
\end{equation*}
$$

where the $Q_{i}(K)$ and $P(K)$ are polynomials in K with $Q_{1}(K)$ and $Q_{2}(K)$ forced to take the factorizable form

$$
\begin{equation*}
Q_{1}(K)=\left(K_{c}-K\right) \dot{Q}_{1}(K) \quad Q_{2}(K)=\left(K_{c}-K\right)^{2}\left(K_{c}+K\right) \dot{Q}_{2}(K) \tag{4.3}
\end{equation*}
$$

The D_{i} in Eq. (4.2) are differential operators in K of order i, and the coefficients in the polynomials $Q_{i}(K)$ and $P(K)$ are fit so that (4.2) is satisfied
as a power series to some order K^{N}. In addition to the Rehr et al. ${ }^{(28)}$ choice for the differential operators

$$
\begin{equation*}
D_{1}=K \frac{d}{d K} \quad D_{2}=D_{1}^{2} \tag{4.4}
\end{equation*}
$$

we have used others, such as

$$
D_{1}=\frac{d}{d K} \quad D_{2}=\left\{\begin{array}{l}
D_{1}^{2} \tag{4.5}\\
K D_{1}^{2}
\end{array}\right.
$$

Finally, we have restricted our choice of approximants to those in which the degrees of the $Q_{i}(K)$ are roughly comparable. The essential difference between our differential approximants and those of Guttmann ${ }^{(20)}$ is the inclusion of the constraints in Eq. (4.3). Without these constraints, the solution of Eq. (4.2) generally consists of a single power-law singularity together with analytic factors and background terms, i.e., a solution which ignores non-analytic confluent singularities.

The numerical procedure for determining the critical constants in (1.4) is straightforward. For fixed K_{c} in (4.3) the remaining coefficients in Q_{i} and P are obtained from the solution of a set of linear equations. Solutions in which the function $\hat{Q}_{2}(K)$ has zeros in the disk $|K|<K_{c}$ or near K_{c} are considered "defective" and ignored. Knowledge of the polynomials $Q_{i}(K)$ suffices to determine γ_{F} and θ_{F} directly as the solutions of a quadratic indicial equation. ${ }^{(28)}$ As already observed for the spin- S Ising model, ${ }^{(9)}$ very reproducible correlations between γ_{F} and θ_{F} are found as K_{c} is varied. To fix $\theta_{F}=\theta$ and hence determine our biased γ_{F} estimates, we employ a Newton-Raphson search which starts with K_{c} near the critical line given by (3.40). Occasionally, no real solution to this nonlinear problem can be found. For θ in the neighborhood of 0.5 most final estimates of K_{c} at order K^{21} lie within 5×10^{-6} of the value (3.40) for $0 \leqslant \omega \leqslant 0.70$. The dispersion in these estimates is much smaller at about $\pm 2 \times 10^{-6}$. The use of several different choices of differential operators D_{i} has proved to be important. For reasons we do not understand, for some parameter ranges many approximants can be found for some particular choices of D_{i}, but not for others. The amplitudes A_{F} and a_{F} in (1.4) can be obtained by integrating the differential equation (4.2) numerically, starting with the known initial conditions at $K=0$. A simpler and faster procedure, ${ }^{(28)}$ which we have adopted here, is to use the differential equation (4.2) to generate two power series representations of $F(K)$, one about $K=0$, the other about $K=K_{c}$. The expansion about $K=0$ agrees with the known series through the order used (e.g., 21) and thereafter simply extends this series to higher order, while the expansion about $K=K_{c}$ depends linearly on the two unknown
amplitudes A_{F} and $A_{F} a_{F}$. These series can be used directly to evaluate the function in the interval $0<K<K_{c}$ and matching F and $d F / d K$ at some conveniently chosen intermediate K then determines A_{F} and a_{F}.

We have included in Table V of the Appendix 50 -term series obtained from two representative differential approximants to the 21 -term spin- $1 / 2$ Ising model susceptibility series: $x d / d x[9,6,9 ; \phi]$ and $d / d x[7,6,7 ; 1]$. We hope these series will prove useful in tests of other methods of confluent singularity analysis. The series coefficients satisfy 9 -term recurrence rela-

Fig. 2. (a) Number of homogeneous approximants to $\chi(\omega)$ yielding a particular γ with a resolution 2×10^{-4}, with a fixed correction-to-scaling exponent $\theta=0.55$. Results, cumulative over $\omega=0,0.05, \ldots, 0.70$, show overall convergence with order; (b) As in (a), but showing instead estimates of $1-\alpha$ within a resolution 2×10^{-3} from the antiferromagnetic singularity in χ; (c) Again, estimates of γ from γ. Here $\theta=0.50$ and $n=21$ are fixed. The order of the inhomogeneous term P_{L} in (4.2) varies from $L=\phi$ (P_{L} null) through $L=2$ as indicated.

Fig. 2. (Continued)
tions of the form $\sum_{i j} Q(i, j)(n-j)^{i} c(n-j)=P(n)$, from which additional terms can be calculated.

Two important trends are apparent when all the data for $0 \leqslant \omega \leqslant 0.70$ are combined into a single output. The first is convergence with order; in Figs. 2a and 2 b we show histograms of the number of biased homogeneous ($L=\phi$) differential approximant estimates for γ and $1-\alpha$ with $\theta=0.55$
based on χ series to order $K^{n}, n=16,17, \ldots, 21$. We note that even forcing a correction-to-scaling term, as we have done by using (4.2), does not guarantee converged estimates if the series length is too short. Consistency suggests that only the $n=19,20$, and 21 estimates for γ represent the asymptotic value. It is interesting but probably coincidental that also no significant estimate of $1-\alpha$ can be made until $n \geqslant 19$. The second important trend results from allowing for a nonvanishing polynomial $P(K)$ in (4.2). In Fig. 2c we show biased estimates γ with $\theta=0.50$, with P ranging from null $(L=\phi)$ to finite order $L=0,1,2$. There is a significant drop in the estimate of γ in going from $L=\phi$ to 0 or 1 , while at $l=2$ the dispersion in the estimates begins to increase. Since we have no a priori reason for believing the background B_{F} in (1.4) should be zero and hence P null, and because they tend to reduce the scatter and improve overall consistency, we base most of our quantitative estimates in the following on $L=1$ inhomogeneous differential approximants.

Detailed results explicitly showing variations with ω are displayed in Figs. 3-6. Figures 3 and 4 are histograms of the number of biased estimates of γ for each value of ω separately; Fig. 3 illustrates convergence with order, while Fig. 4 illustrates the effect of inhomogeneous terms in the differential equation (4.2). In both figures we also show the effect of changes in θ between 0.50 and 0.55 at order K^{21}. We find that γ correlates positively with θ for small ω and anticorrelates with θ for large ω, in qualitative agreement with the spin- S Ising results. ${ }^{(9)}$ Our "best" approximants are those obtained with the polynomial P of order $L=1$; those based on the operator choice (4.5) are shown in Figs. 4 c and 4 d for $\theta=0.50$ and 0.55 . From this and additional data based on the choice (4.4) we conclude that universality is best satisfied with

$$
\begin{equation*}
\gamma=1.237 \pm 0.002, \quad \theta_{\chi}=0.52 \pm 0.03 \tag{4.6}
\end{equation*}
$$

The error bars are subjective, but, we believe, reasonable. In particular, the very distinct downward trend of γ with increasing ω shown in Fig. 4d makes any value $\theta>0.55$ unreasonable if universality is assumed. On the other hand, θ slightly smaller than 0.50 is probably not excluded by the data shown in Fig. 4c, especially if the estimates for $\omega \geqslant 0.60$ are excluded as unreliable. Such exclusion might be reasonable, since the amplitude a_{x} is large in this regime and the form (1.4) is likely first to become inadequate there. Finally, the estimate (4.6) is lower than our preliminary spin- S estimate $\gamma=1.239 \pm 0.002$ almost certainly because of our present reliance on inhomogeneous approximants. Figure 5 shows histograms of biased estimates of $2 v$ determined from $M_{2} / \chi=2 \xi^{2}$ approximants. Again, from the

Fig. 3. Histograms, centered on discrete ω, of the number of homogeneous approximants to $\chi(\omega)$ yielding a particular γ with resolution 2×10^{-4}. For each ω, about 25 approximants with the choice (4.5) are sought; of those that are found, only the nondefective are plotted. This number may be small, as, for example, in (b), where for $\omega=0,0.05, \ldots$ only $10,10,8,6,7, \ldots$ estimates are available. Plots (a), (b), and (c) show variations with order n with fixed $\theta=0.55$ and are a detailed breakdown of some of the cumulative results in Fig. 2a. The result of changing to $\theta=0.50$ with $n=21$ is shown in (d). The equivalent cumulative result is shown in Fig. 2c.
$L=1$ data shown in Figs. 5c and 5d and from additional data based on (4.4), we conclude that universality is best satisfied with

$$
\begin{equation*}
2 v=1.260 \pm 0.003, \quad \theta_{\xi^{2}}=0.51 \pm 0.03 \tag{4.7}
\end{equation*}
$$

The consistency between $\theta_{\xi^{2}}$ and θ_{χ} is noteworthy.

Fig. 4. Histograms of γ estimates similar to Fig. 3, but with $n=21$ fixed and a possible inhomogeneous term P_{L} in (4.2). Plots (a), (b), and (c) show variation with order L with fixed $\theta=0.50$ and are a detailed breakdown of some cumulative results in Fig. 2c. The result of changing to $\theta=0.55$ with $L=1$ is shown in (d). The solid horizontal lines in (c) and (d) indicate the bounds in our estimate $\gamma=1.237 \pm 0.002$.

Finally, Fig. 6 shows histograms of $1-\alpha$ based on both χ and M_{2} / χ series. A correction-to-scaling term is not built into the antiferromagnetic singular point in (1.4) and hence the substantial deviations from universal behavior are not surprising. From the low- ω regime we conclude that

$$
\begin{equation*}
\alpha=0.11 \pm 0.02 \tag{4.8}
\end{equation*}
$$

which agrees with the value given by the hyperscaling relation, $\alpha=2-3 v$, using the estimate (4.7); however, the precision is not sufficient for a

Fig. 5. Histograms of $2 v$ estimates based on approximants to ξ^{2} with the choice (4.5). Plots (a)-(d) show variations with n, L, and θ as labeled. Resolution in $2 v$ is 4×10^{-4}. The solid horizontal lines in (c) and (d) indicate the bounds in our estimate $2 v=1.260 \pm 0.003$.
definitive test. At the particular value $\omega=0.31$ (i.e., $y^{*}=0.90$) our approximants yield $1-\alpha_{\chi}=0.895 \pm 0.01$, in good agreement with the estimate of ref. 19. While the hyperscaling relation $\alpha=2-3 v$ is satisfied better at this value of ω, drawing conclusions about the validity of hyperscaling based on a single series estimate may be misleading.

From (4.6) and (4.7) we deduce $\eta=2-\gamma / v=0.036 \pm 0.006$, if we assume that the errors in γ and v are uncorrelated. However, this is not

Fig. 6. Histograms of $1-\alpha$ estimates from χ or ξ^{2} series as labeled. Resolution in $1-\alpha$ is 2×10^{-3}. Plots (a) and (b) are a detailed breakdown of some cumulative results shown in Fig. 2b. The solid horizontal lines in (d) indicate the bounds in our estimate $\alpha=0.11 \pm 0.02$.
realistic, since we observe strong linear correlation with nearly equal slopes between the pairs γ and K_{c}, and $2 v$ and K_{c}. If we impose the obvious constraint that χ and M_{2} / χ have the same K_{c}, we find $2 v-\gamma=0.0226 \pm 0.0004$ and hence

$$
\begin{equation*}
\eta=0.0359 \pm 0.0007 \tag{4.9}
\end{equation*}
$$

This value is consistent with the latest field-theoretic results from ref. 4, $\eta \approx 0.0365 \pm 0.003$, and marginally consistent with the series estimate from ref. 18, $\eta \approx 0.0375(10)$ (again doubling those authors' one-standarddeviation error estimates). Note that our best estimates of γ and $2 v$ in Eqs. (4.6) and (4.7) are also consistent with this constraint on K_{c}; with $\gamma=1.237$ we obtain $2 v=1.2596 \pm 0.0004$; and with $2 v=1.260$ we obtain $\gamma=1.2374 \pm 0.004$.

Precise and meaningful values for the correction-to-scaling amplitudes cannot be given without first specifying the critical exponents. We show in Figs. 7a and 7b the very nearly linear correlations between a_{x} and γ, and

Fig. 7. Correction-to-scaling amplitudes. (a) Correlation plot a_{χ} versus γ from χ approximants with the choice (4.4) and $\theta=0.50$; (b) correlation plot of $a_{\xi^{2}}$ versus $2 v$ from ξ^{2} approximants with the choice (4.4) and $\theta=0.50$.
$a_{\xi^{2}}$ and $2 v$, obtained from our inhomogeneous approximants with $L=1$ and $\theta=0.50$. Thus, with the central values in (4.6) and (4.7) we find that the leading correction to scaling vanishes consistently for χ and M_{2} / χ at $\omega=\omega^{*}, y=y^{*}$ with

$$
\begin{equation*}
\omega^{*}=0.39, \quad y^{*}=0.85 \tag{4.10}
\end{equation*}
$$

With the Chen et al. ${ }^{(13)}$ central estimate of $y^{*}=0.87$ we obtain from Fig. 7 the value $\gamma \approx 1.2383$, consistent with their result (1.2385), and predict $v \approx 0.6311$. Similarly, with $y^{*}=0.90$ of ref. 19 , we obtain $\gamma \approx 1.2395$ and $v \approx 0.6322$, which are again consistent with their estimates. Note, however, that with these higher values for the exponents γ and $v, \eta \approx 0.0379$ and 0.0396 , respectively, which is no longer consistent with the value in (4.9), obtained by demanding K_{c} equality. The consistency of our results gives us additional confidence in the validity of our estimates. If we were to make the now unreasonable assumption that corrections to scaling vanish for the spin-1/2 Ising model, we would find $\gamma \approx 1.243$, in agreement with the analysis by Ferer and Velgakis ${ }^{(16)}$ based on a 5 -fit method or Guttmann ${ }^{(20)}$ based on nonconfluent differential approximants; similarly, we would find $v \approx 0.635$. Again, with our own central estimates $\gamma=1.237,2 v=1.260$, and $\theta=0.52$, we obtain from Fig. 8 the spin-1/2 Ising estimates of the correction-to-scaling amplitudes

$$
\begin{equation*}
a_{\chi}=-0.13, \quad a_{\xi^{2}}=-0.22 \tag{4.11}
\end{equation*}
$$

Fig. 8. Correction-to-scaling amplitudes. Estimates of $a_{\chi}(\times)$ and $0.60 a_{\xi^{2}}$) versus ω from Fig. 7 assuming $\gamma=1.237,2 v=1.260$, and $\theta=0.50$ (solid line); and from a similar plot assuming $\gamma=1.237,2 v=1.260$, and $\theta=0.55$ (dashed line).
and

$$
\begin{equation*}
\frac{a_{\xi^{2}}}{a_{\chi}}=1.70 \tag{4.12}
\end{equation*}
$$

This same ratio estimate applies to within a few percent for all $\omega \leqslant 0.5$, as can be seen from our plot of a_{χ} and $0.60 a_{\xi^{2}}$ versus ω in Fig. 8. For $\omega \geqslant 0.5$ this ratio drops considerably and could conceivably agree with the continuum ϕ^{4} model estimate ${ }^{(32)}$ of 1.30 ± 0.10 in the neighborhood of the Gaussian point. As discussed in Section 1, this model dependence of the amplitude ratio is one of the indications we have for a possible absence of universality. However, given the latest continuum model estimates, ${ }^{(4)}$ the value 1.30 may well be suspect.

Of course it is worth recalling from Fig. 2 that systematic trends in many of our estimates are apparent through order K^{19}. It is only because of the apparent stability of estimates based on 19-, 20-, and 21 -term series and the internal consistency of results for χ and ξ^{2} over a range of ω that we can have any confidence at all in our estimates. Also, the low- ω regime, and in particular the spin-1/2 Ising limit, remains notoriously difficult to analyze. Even at order K^{21}, the estimates for γ are typically bimodally distributed, as can be seen in Fig. 4. Finally, there is still a fairly large uncertainty in the value of θ and in the correction-to-scaling amplitude ratios. Thus, there is still very considerable justification for attempting to obtain even longer series.

5. EXTENSION OF SERIES

In the conclusion of the preceding section we discussed how the question of universality is not fully resolved and why there is justification for attempting to extend the available series even further. Extension by two orders in K is unlikely to lead to any significant change in these conclusions; extension by five or more orders in K is almost certainly impossible with the techniques and computer resources now available. Thus, the discussion below assumes as a reasonable goal the extension of the series to order K^{25}. At this order the array c_{m} used in the program segment described in Section 3 can still be packed onto a single 32 -bit word, and the graph weights w can probably still be handled exactly as integers with the IBM quadruple-precision facility. Thus, large sections of the present program still can be employed without major modification.

Two features of the present program, however, must almost certainly be modified or at least receive serious attention. The first feature is apparent when we estimate the storage requirements for a naive extension
of the calculation by the program segment described in Section 3. The number of entries of 2-rooted, 1 -irreducible contributions in each order n for $n=1,3,5, \ldots, 19$, and 21 are $1,2,5,19,81,353,1619,7704,38,353$, 204,854, and $1,055,792$. Extrapolation suggests 6×10^{6} and 35×10^{6} entries at orders 23 and 25 . At 32 bytes/entry the order- 25 list would require some thirty 40 -megabyte tapes for storage. However, as discussed in Section 3, each entry contains the information necessary to obtain the complete embedding constant array e_{k}. If we restrict ourselves a priori to calculations of χ and M_{2} only, then the complete arrays e_{k} at high order are not required and a very considerable increase in packing density should be possible.

The second feature, which we believe will be the more difficult to modify significantly, is the time required for the generation of the elementary 2 -rooted, 2 -irreducible graphs. Our present program generates these graphs recursively by using the slightly modified Heap rules ${ }^{(37)}$: (1) Join any two existing vertices with a new bond, provided the vertices are not already linked by a bond; (2) insert a second-order vertex on any existing bond and join it to an existing vertex with a new bond, provided again that the vertices are not already linked by a bond; and (3) insert two secondorder vertices on distinct existing bonds and join these by a new bond. The modifications we have introduced are for the purpose of excluding graphs with multiple bonds.

Finally, we use as the starting graph for this process the 2 -rooted elementary graph shown in Fig. 9a and supplement the three Heap rules with the following: (4) Do not join the two root vertices with a new bond. We can prove that this algorithm will generate all elementary graphs by showing that for any elementary graph other than the starting graph, at least one bond can be removed which will leave the resulting graph elementary. For example, for the graph shown in Fig. 9b, any one of the four

Fig. 9. Two elementary 2-rooted, 2-irreducible graphs with vertex assignments obtained from the algorithm described in the text. Each edge will eventually be replaced by a "nearest" neighbor bond or a 2-rooted, 1-irreducible segment in the bond renormalization section of the graph generating program.
bonds joining vertices 2-3, 2-4, 2-5, or 3-6 can be removed. Of course, this also shows that the graph in Fig. 9b will be generated four separate times on application of the Heap rules to lower-order graphs. Since for a general high-order graph almost all bonds can be so removed, the Heap rules are very inefficient, because of duplication. To obtain the 7×10^{6} graphs estimated in Section 3 for an order- K^{25} calculation, probably in excess of 10^{8} graphs must first be generated. We believe that to make an order- K^{25} calculation feasible, a more efficient algorithm to replace the Heap rules is required, and we hope some reader will be interested in this challenging theoretical design problem. Ideally, all duplication should be avoided by such a new algorithm; if this is not possible, one will still require an efficient algorithm for uniquely identifying each graph so that a tabular search can be initiated.

The algorithm we used for graph identification is probably adequate and is easily described. We begin as our step 1 by labeling the roots 1 and 2 in both possible ways. Internal vertices are labeled 3, 4,... in subsequent steps. Now in general, at the completion of step $n-1$, where $n=2,3, \ldots$, distinct labelings of the first n vertices will have been kept in store as possible candidates for further testing. To accomplish this testing at step n, we first scan through the labeled vertices in the first member of our candidate list in search for the largest vertex which is connected to as yet unlabeled ones. Having found this largest, say $m \leqslant n$, we proceed to assign $n+1$ in turn to every unlabeled vertex that is connected to it. For each assignment we form the integer string $m l k \ldots$ of labeled vertices that are connected to $n+1$ with the convention $m>l>k>\cdots$. Then, of all possible labelings at this step, we keep in a temporary list those that maximize in turn l, then k, \ldots. Since the strings to be tested will in general be of varying length, we need to imagine for this maximization that each string mlk... is supplemented on the right with trailing zeros. As an example, the possible strings at $n=4$ are, in order, $4321>432>431>43>421>42>41>4>321>32>$ $31>3$; the remaining $21>2>1$ never occur.

Having found the maximal string and associated (temporary) labelings for the first member in our candidate list, we proceed through the rest in a similar fashion. Either we find a smaller string, in which case the new vertex assignment is discarded, or we find a string greater than or equal to the previous maximal. If greater, all preceding temporary lists are discarded, but in both this and the equals case the new labeling is incorporated as part of our (temporary) list. On testing completion this list becomes the possible candidate list for step $n+1$. Note that the discard process makes the algorithm relatively efficient; each list length is the symmetry number of the partially labeled graph and this typically is quite small.

When the labeling is finally complete, we use as the unique graph
identifier the composite integer string formed from the individual strings generated at $n=2,3, \ldots$ and listed from left to right with a single 0 between string segments. As an example, the algorithm generates the unique strings 210321 and 210320420531 for the graphs in Fig. 9. Furthermore, it shows that the corresponding labeling in Fig. $9 b$ is unique, whereas the labeling in Fig. 9a is only one of four symmetry equivalent ones - essential information for the subsequent bond renormalization segment of our program.

Given the integer strings generated as described above, graph comparisons are easily made by an individual integer-by-integer comparison or, equivalently, by number comparison where each graph is the single number that is the string in a system with an appropriate radix. For a list of all elementary graphs of $\leqslant 25$ bonds, a radix $\geqslant 17$ is necessary, but in fact, such a complete list is not required and radix 16 is both adequate and convenient for packing all strings on at most five 32 -bit words.

The elementary list reduction comes from the fact that for a calculation of zero-field χ and M_{2} on the bcc lattice family, every elementary graph must, after bond renormalization, contain only even-order internal vertices and even loops so that it can be embedded on a linear chain or a pair of nearest-neighbor sites. For example, the even-order vertex requirement can be achieved by doubling bond 3-4 in Fig. 9 a and bonds 1-6 and $4-5$ in Fig. 9b. The even-loop requirement can be achieved by the insertion of a second-order vertex on bond 3-4 in Fig. 9a and on bonds 1-3 and 2-4 in Fig. 9b. Other doublings and insertions may also work, but in any case the graphs in Fig. 9 cannot contribute at orders lower than the "true" orders defined by the addition of these minimal doublings and insertions to the direct bond counts, i.e., $5+1+1=7$ and $9+2+2=13$. These "true" orders are the ones used for the graph counts given in Section 3, but the Heap rules were not completely successfully supplemented to avoid redundancy by generating graphs of too high "true" order.

In summary, we believe the derivation of an efficient algorithm to replace the Heap rules for graph generation represents a challenging theoretical problem whose solution would be of great practical use in making possible the extension of the series now available.

ACKNOWLEDGMENTS

The authors thank M. E. Fisher and G. A. Baker for discussions and suggestions. This work was supported in part by NSERC (B.G.N.) and by NSF grant DMR 82-07357 (J.J.R.).

REFERENCES

1. G. A. Baker, Jr., and J. M. Kincaid, J. Stat. Phys. 24:469 (1981).
2. M. E. Fisher, Rep. Prog. Phys. 30:615 (1967).
3. M. A. Moore, D. Jasnow, and M. Wortis, Phys. Rev. Lett. 22:940 (1969).
4. J. C. Le Guillou and J. Zinn-Justin, Phys. Rev. $21: 3976$ (1980); J. Phys. Lett. (Paris) 46: L-137 (1985); J. Phys. (Paris) 48:19 (1987).
5. B. G. Nickel and B. Sharpe, J. Phys. A: Math. Gen. 12:1819 (1979).
6. D. S. Gaunt and M. F. Sykes, J. Phys. A: Math. Gen. 12:L25 (1979).
7. J. Zinn-Justin, J. Phys. (Paris) 40:969 (1979).
8. D. S. Gaunt, in Phase Transitions: Cargèse 1980, M. Levy, J. C. Le Guillou, and J. ZinnJustin, eds. (Plenum Press, New York, 1982), p. 217.
9. B. G. Nickel, in Phase Transitions: Cargèse 1980, M. Levy, J. C. Le Guillou, and J. ZinnJustin, eds. (Plenum Press, New York, 1982), p. 291.
10. J. Zinn-Justin, J. Phys. (Paris) 42:783 (1981).
11. P. Moussa, J. Stat. Phys. $27: 711$ (1982).
12. R. Z. Roskies, Phys. Rev. B 24:5305 (1981).
13. J.-H. Chen, M. E. Fisher, and B. G. Nickel, Phys. Rev. Lett. $48: 630$ (1982).
14. B. Nickel and M. Dixon, Phys. Rev. B 26:3965 (1982).
15. J. Adler, M. Moshe, and V. Privman, Phys. Rev. B 26:3958 (1982).
16. M. Ferer and M. Velgakis, Phys. Rev. B 27:2839 (1983).
17. J. L. Gammel and D. C. Power, J. Phys. A: Math. Gen. 16:L359 (1983); J. L. Gammel, J. Nuttal, and D. C. Power, St. Louis University Preprint (1983).
18. M. J. George and J. J. Rehr, Phys. Rev. Lett. 53:2063 (1984).
19. M. E. Fisher and J.-H. Chen, J. Phys. (Paris) 46:1645 (1985).
20. A. J. Guttmann, J. Phys. A: Math. Gen. 20:1855 (1987).
21. A. J. Liu and M. E. Fisher, Physica A 156:35 (1989).
22. B. Nickel, Physica (Utrecht) 106A:48 (1981).
23. J. J. Rehr and B. Nickel, J. Stat. Phys. 24:710 (1981).
24. J. J. Rehr and B. G. Nickel, Bull. Am. Phys. Soc. 26:242 (1981).
25. M. Blume, Phys. Rev. $141: 517$ (1966); H. W. Capel, Physica 32:966 (1966).
26. J. R. Klauder, Ann. Phys. (N.Y.) 117:19 (1979).
27. G. A. Baker, Jr., and A. R. Bishop, J. Phys. A: Math. Gen. 15:L201 (1982).
28. J. J. Rehr, G. S. Joyce, and A. J. Guttmann, J. Phys. A: Math. Gen. 13:1587 (1980).
29. M. E. Fisher and R. M. Kerr, Phys. Rev. Lett. 39:667 (1977); M. E. Fisher and H. Au-Yang, J. Phys. A: Math. Gen. 12:1677 (1979).
30. F. J. Wegner, Phys. Rev. B 5:4529 (1972).
31. F. S. Acton, Numerical Methods That Work (Harper and Row, New York, 1970), p. 552.
32. C. Bagnuls and C. Bervillier, Phys. Rev. B 24:1226 (1981).
33. M. Wortis, in Phase Transitions and Critical Phenomena, Vol. 3, C. Domb and M. S. Green, eds. (Academic Press, London, 1974), p. 113.
34. D. E. Knuth, The Art of Computer Programming, Vol. 3 (Addison-Wesley, Reading, Massachusetts, 1973).
35. M. A. Moore, D. M. Saul, and M. Wortis, J. Phys. C. Solid State 7:162 (1974).
36. G. S. Joyce, in Phase Transitions and Critical Phenomena, Vol. 2, C. Domb and M. S. Green, eds. (Academic Press, London, 1972), p. 375.
37. B. R. Heap, J. Math. Phys. 7:1582 (1966).

APPENDIX

Spin-S, Blume-Capel, Klauder, and double-Gaussian series coefficients (Tables I-IV) and representative differential approximants (Table V).
$.0000000000000000000000+00$
$.2000000000000000000000+01$
\qquad $600000000000000000000 \mathrm{a}+02$ $065168750000000000000 \mathrm{Q}+03$
 $125539654017857142857 Q+04$
$4193716964285714285710+05$

$$
\begin{aligned}
& 1.000000000000000000000 \mathrm{Q}+00 \\
& 4.000000000000000000000 \mathrm{Q}+00 \\
& 1.300000000000000000000 \mathrm{Q}+01 \\
& 4.150000000000000000000 \mathrm{Q}+01 \\
& 1.230625000000000000000 \mathrm{Q}+02 \\
& 3.611687500000000000000 \mathrm{Q}+02 \\
& 1.025917187500000000000 \mathrm{Q}+03 \\
& 2.893196540178571428571 \mathrm{Q}+03 \\
& 8.019660177176339285714 \mathrm{Q}+03 \\
& 2.210227148786272321429 \mathrm{Q}+04 \\
& 6.029480639003208705357 \mathrm{Q}+04 \\
& 1.637421896890932553774 \mathrm{Q}+05 \\
& 4.417167202414069237647 \mathrm{Q}+05 \\
& 1.1874205448825629250510+06 \\
& 3.177007530497828697672 \mathrm{Q}+06 \\
& 8.476907672276083150297 \mathrm{Q}+06 \\
& 2.253875180634554426427 \mathrm{Q}+07 \\
& 5.979525989701474690812 \mathrm{Q}+07 \\
& 1.582050555418932434201 \mathrm{Q}+08 \\
& 4.178254174929685401110 \mathrm{Q}+08 \\
& 1.101095079973504826426 \mathrm{Q}+09 \\
& 2.897400051461383972769 \mathrm{Q}+09
\end{aligned}
$$

 ∞
\underline{z}
z
11
0
$4.000000000000000000000 \mathrm{Q}+00$
$3.200000000000000000000 \mathrm{Q}+01$
\qquad

 88
4
4
88
88
88
88
88
88
88
88
88
88
88
88
8 $000000000000000000000 \mathrm{Q}+00$
$360000000000000000000 \mathrm{Q}+01$ 1． $576000000000000000000 \mathrm{Q}+01$
 $4.56287346938775510204 \mathrm{Q}+02$
$1.394081959183673469388 \mathrm{Q}+03$ 1． $23746413689350649350649 Q+04$

 $2.755350792486373573337 \mathrm{Q}+06$
$7.963516033094672075884 \mathrm{Q}+06$

$00+0000000000000000000000^{\circ}$－
○SS60

 뭉 ヘin N
ज
ज 384
339 $m \mathrm{~m}$会

N
©

> 88
> $\stackrel{8}{8} 8$
> 응

${ }^{-7}{ }^{-}$
，
－SUSCEPTIBILITY
Table I．（Continued）
$8.00000000000000000000000 \mathrm{Q}+00$
$1.28000000000000000000000 \mathrm{Q}+02$
$1.44300000000000000000000 \mathrm{Q}+03$
$1.41760000000000000000000 \mathrm{Q}+04$
$1.28239337500000000000000 \mathrm{Q}+05$
$1.10198580000000000000000 \mathrm{Q}+06$
$9.12291126808035714285714 \mathrm{Q}+06$
$7.35129392535714285714286 \mathrm{Q}+07$
$5.79871660642864118303571 \mathrm{Q}+08$
$4.49839231313372767857143 \mathrm{Q}+09$
$3.44174755246408597713322 \mathrm{Q}+10$
$2.60362787122443625963880 \mathrm{Q}+11$
$1.95060037805396898598434 \mathrm{Q}+12$
$1.44941805624036110079525 \mathrm{Q}+13$
$1.06930461383404729833916 \mathrm{Q}+14$
$7.83986388741843663798832 \mathrm{Q}+14$
$5.71628205449322327359434 \mathrm{Q}+15$
$4.14764223160988640167649 \mathrm{Q}+16$
$2.99627199313869840898974 \mathrm{Q}+17$
$2.15603705755829430070984 \mathrm{Q}+18$
$1.54589241747430033629882 \mathrm{Q}+19$

[^4]

 SSSSin心に

 888
888
888
888
888
888
888
888
888
888
88

\qquad

$$
\begin{aligned}
& \text { ○心に }
\end{aligned}
$$

 SOOMONOMNTNNONON
 －ᄋᄋm○
 －8Sm＠

 ○ᄋm○

$-\infty$ inamNr－NumNr－
Table II

Table II. (Continued)

Table II. (Continued)

Table II. (Continued)

Table III

צコロロทาม－－－

$00+8 \mathrm{Czz-}$
0216762
N
11520
Table III. (Continued)

635313461217076718182858752000
-1793709000202681704728225040000
24506755487997499074031313530050
-2139873957753905475047967838740
1330718812436950669020122427230
-622431470972938521051718286688
225646206221321851888786291860
-64414483980503478632896828360
145667490949303068551602669112
-2603417227595663494620532384
363793504089481409295671432
-38941647547270643414825840
3089656578497196271508960
-172664581471849277628288
6272445706913287241856
-129434389840398965760
1171769671850572800
-2366229165834240
526727577600

0ZGL208LG

-

0ヶ909101

$=30$

l						

$\varepsilon=$ NOISNEWIO $\cdot \cdot$ INJWOW ONODJS

009

Table IV. (Continued)

Table V

[^0]: ${ }^{1}$ Department of Physics, University of Guelph, Guelph N1G 2W1, Ontario, Canada.
 ${ }^{2}$ Department of Physics, FM-15, University of Washington, Seattle, Washington 98195.

[^1]: ${ }^{3}$ See, for example, the discussion of hyperscaling in ref. 5, or compare the analyses by Gaunt and Sykes ${ }^{(6)}$ and Zinn-Justin. ${ }^{(7)}$ A review of early work has been compiled by Gaunt. ${ }^{(8)}$

[^2]: ${ }^{6}$ The second-order inhomogeneous differential approximants exhibit critical behavior of the form (1.4), in which the coefficients A_{F}, a_{F}, and $B_{F}\left(C_{F}\right.$ and $\left.D_{F}\right)$ are regular functions of K at $K_{c}\left(-K_{c}\right)$. While it is not likely that the background term B_{F} contains the leading corrections beyond the $\left(1-K / K_{c}\right)^{\theta}$ term, its inclusion tends to give more stable estimates for γ_{F} and θ_{F}. This background term may also be the best polynomial approximation to additional important but slowly varying confluent corrections.

[^3]: ${ }^{7}$ One can show that both models are members of a class of one-parameter models with triangular expansions for the series coefficients, all of which interpolate continuously between Ising and Gaussian limits. The moment generating functions $G(h)=\int f\left(\phi^{2}\right) \exp (-h \phi) d \phi$ for this class satisfy the second-order differential equation $G^{\prime \prime}-(1+\lambda)(1-y) h G^{\prime}-$ $\left[1-\lambda(1-y)^{2} h^{2}\right] G=0$, with $0 \leqslant \lambda \leqslant 1$. The value $\lambda=0$ corresponds to the Klauder model and $\lambda=1$ to the double-Gaussian model.

[^4]: INF
 ω

